137 research outputs found

    Impurity state in the vortex core of d-wave superconductors: Anderson impurity model versus unitary impurity model

    Get PDF
    Using an extended Anderson/Kondo impurity model to describe the magnetic moments around an impurity doped in high-TcT_{\text{c}} d-wave cuprates and in the framework of the slave-boson meanfield approach, we study numerically the impurity state in the vortex core by exact diagonalization of the well-established Bogoliubov-de Gennes equations. The low-energy impurity state is found to be good agreement with scanning tunnelingmicroscopy observation. After pinning a vortex on the impurity site, we compare the unitary impurity model with the extended Anderson impurity model by examining the effect of the magnetic field on the impurity state. We find that the impurity resonance in the unitary impurity model is strongly suppressed by the vortex; while it is insensitive to the field in the extended Anderson impurity model.Comment: 8 pages, 3 figure

    Power spectrum of many impurities in a d-wave superconductor

    Full text link
    Recently the structure of the measured local density of states power spectrum of a small area of the \BSCCO (BSCCO) surface has been interpreted in terms of peaks at an "octet" of scattering wave vectors determined assuming weak, noninterfering scattering centers. Using analytical arguments and numerical solutions of the Bogoliubov-de Gennes equations, we discuss how the interference between many impurities in a d-wave superconductor alters this scenario. We propose that the peaks observed in the power spectrum are not the features identified in the simpler analyses, but rather "background" structures which disperse along with the octet vectors. We further consider how our results constrain the form of the actual disorder potential found in this material.Comment: 5 pages.2 figure

    Localized surface states in HTSC: Alternative mechanism of zero-bias conductance peaks

    Full text link
    It is shown that the quasiparticle states localized in the vicinity of surface imperfections of atomic size can be responsible for the zero-bias tunneling conductance peaks in high-Tc superconductors. The contribution from these states can be easily separated from other mechanisms using their qualitatively different response on an external magnetic field.Comment: REVTeX, 4 pages, 2 figs; to be published in PR

    Vortex structure in d-density wave scenario of pseudogap

    Full text link
    We investigate the vortex structure assuming the d-density wave scenario of the pseudogap. We discuss the profiles of the order parameters in the vicinity of the vortex, effective vortex charge and the local density of states. We find a pronounced modification of these quantities when compared to a purely superconducting case. Results have been obtained for a clean system as well as in the presence of a nonmagnetic impurity. We show that the competition between superconductivity and the density wave may explain some experimental data recently obtained for high-temperature superconductors. In particular, we show that the d-density wave scenario explains the asymmetry of the gap observed in the vicinity of the vortex core.Comment: 8 pages, 10 figure

    The Periodic Instability of Diameter of ZnO Nanowires via a Self-oscillatory Mechanism

    Get PDF
    ZnO nanowires with a periodic instability of diameter were successfully prepared by a thermal physical vapor deposition method. The morphology of ZnO nanowires was investigated by SEM. SEM shows ZnO possess periodic bead-like structure. The instability only appears when the diameter of ZnO nanowires is small. The kinetics and mechanism of Instability was discussed at length. The appearance of the instability is due to negative feed-back mechanism under certain experimental conditions (crystallization temperature, vapor supersaturation, etc)

    Quantum algebra in the mixed light pseudoscalar meson states

    Full text link
    In this paper, we investigate the entanglement degrees of pseudoscalar meson states via quantum algebra Y(su(3)). By making use of transition effect of generators J of Y(su(3)), we construct various transition operators in terms of J of Y(su(3)), and act them on eta-pion-eta mixing meson state. The entanglement degrees of both the initial state and final state are calculated with the help of entropy theory. The diagrams of entanglement degrees are presented. Our result shows that a state with desired entanglement degree can be achieved by acting proper chosen transition operator on an initial state. This sheds new light on the connect among quantum information, particle physics and Yangian algebra.Comment: 9 pages, 3 figure

    Effect of magnetic field on impurity bound states in high-temperature superconductors

    Full text link
    We consider the influence of a magnetic field H on the quasiparticle bound states near scalar impurities in d-wave superconductors. A ``Doppler shift'' in the excitation energies induced by the supercurrent leads to several important effects. At large but finite impurity strength, there are corrections to the energy and width of the impurity-induced resonance, proportional to H^2. On the other hand, in the limit of very strong impurity potential (unitary limit), the bound state is destroyed and acquires a finite width proportional to H/ln H. There are also considerable changes in the asymptotic behaviour of the bound state wave functions.Comment: RevTeX, 5 pages, 2 figure

    Influence of impurity scattering on tunneling conductance in normal metal- d -wave superconductor junctions

    Full text link
    Tunneling conductance spectra between a normal metal / d-wave superconductor junction under the presence of bulk impurities in the superconductor are studied. The quasiclassical theory has been applied to calculate the spatial variation of the pair potential and the effect of impurity scattering has been introduced by t-matrix approximation. The magnitude of a subdominant s-wave component at the interface is shown to robust against the impurity scattering while that for a subdominant dxyd_{xy}-wave component is largely suppressed with the increase of the impurity scattering rate. The zero-bias conductance peak due to the zero-energy Andreev bound states is significantly broadened for the case of Born limit impurity compared with that of unitary limit impurity.Comment: 14 pages, 5 figure

    Zn-Neighbor Cu NQR in Zn-Substituted YBa2Cu3O7-d and YBa2Cu4O8

    Full text link
    We studied local electronic states near Zn in optimally doped YBa2_2(Cu1−x_{1-x}Zn_x)3_3O7−δ_{7-\delta} and underdoped YBa2_2(Cu1−x_{1-x}Zn_x)4_4O8_8 via satellite signals of plane-site Cu(2) nuclear quadrupole resonance (NQR) spectra. From the relative intensity of Cu NQR spectra, the satellite signals are assigned to Zn-neighbor Cu NQR lines. The Cu nuclear spin-lattice relaxation time of the satellite signal is shorter than that of the main signal, which indicates that the magnetic correlation is locally enhanced near Zn both for the underdoped and the optimally doped systems. The pure YBa2_2Cu4_4O8_8 is a stoichiometric, homogenous, underdoped electronic system; nevertheless, the Zn-induced inhomogeneous magnetic response in the CuO2_2 plane is more marked than that of the optimally doped YBa2_2Cu3_3O7−δ_{7-\delta}.Comment: 9 pages including 8 figures, to be published in Phys. Rev.
    • …
    corecore