32,980 research outputs found
Work Function of Single-wall Silicon Carbide Nanotube
Using first-principles calculations, we study the work function of single
wall silicon carbide nanotube (SiCNT). The work function is found to be highly
dependent on the tube chirality and diameter. It increases with decreasing the
tube diameter. The work function of zigzag SiCNT is always larger than that of
armchair SiCNT. We reveal that the difference between the work function of
zigzag and armchair SiCNT comes from their different intrinsic electronic
structures, for which the singly degenerate energy band above the Fermi level
of zigzag SiCNT is specifically responsible. Our finding offers potential
usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure
Hurst parameter analysis of radio pulsar timing noise
We present an analysis of timing residual (noise) of 54 pulsars obtained from
25-m radio telescope at Urumqi Observatory with a time span of 5~8 years,
dealing with statistics of the Hurst parameter. The majority of these pulsars
were selected to have timing noise that look like white noise rather than
smooth curves. The results are compared with artificial series of different
constant pairwise covariances. Despite the noise like appearance, many timing
residual series showed Hurst parameters significantly deviated from that of
independent series. We concluded that Hurst parameter may be capable of
detecting dependence in timing residual and of distinguishing chaotic behavior
from random processes.Comment: 7 pages, 3 figures, 2 tables, Submitted to MNRA
Superconducting screening on different length scales in high-quality bulk MgB2 superconductor
High quality bulk MgB2 exhibit a structure of voids and agglomeration of
crystals on different length-scales. Because of this, the superconducting
currents percolate between the voids in the ensuing structure. Magnetic
measurements reveal that the superconducting currents circulate on at least
three different length-scales, of ~1 micrometre, ~10 micrometre and whole of
the sample (~millimetre). Each of these screenings contributes to the measured
irreversible magnetic moment (Dm). The analysis of the field dependence of Dm
for samples of subsequently decreasing size showed that the critical current
obtained using the simple critical state model is erroneous. This leads to the
artefact of the sample size-dependent critical current and irreversibility
field. Our data analysis enables the separation of the contribution of each of
the screening currents to Dm. The field dependence of each of the currents
follows a stretched exponential form. The currents flowing around whole of the
sample give a dominant contribution to Dm in the intermediate fields (1T < H <
4T at 20K) and they can be used to obtain the value of Jc from critical state
model, which corresponds to the transport Jc
Critical Current Density and Resistivity of MgB2 Films
The high resistivity of many bulk and film samples of MgB2 is most readily
explained by the suggestion that only a fraction of the cross-sectional area of
the samples is effectively carrying current. Hence the supercurrent (Jc) in
such samples will be limited by the same area factor, arising for example from
porosity or from insulating oxides present at the grain boundaries. We suggest
that a correlation should exist, Jc ~ 1/{Rho(300K) - Rho(50K)}, where Rho(300K)
- Rho(50K) is the change in the apparent resistivity from 300 K to 50 K. We
report measurements of Rho(T) and Jc for a number of films made by hybrid
physical-chemical vapor deposition which demonstrate this correlation, although
the "reduced effective area" argument alone is not sufficient. We suggest that
this argument can also apply to many polycrystalline bulk and wire samples of
MgB2.Comment: 11 pages, 3 figure
Nodeless superconductivity in IrPtTe with strong spin-orbital coupling
The thermal conductivity of superconductor IrPtTe
( = 0.05) single crystal with strong spin-orbital coupling was measured down
to 50 mK. The residual linear term is negligible in zero magnetic
field. In low magnetic field, shows a slow field dependence. These
results demonstrate that the superconducting gap of IrPtTe is
nodeless, and the pairing symmetry is likely conventional s-wave, despite the
existence of strong spin-orbital coupling and a quantum critical point.Comment: 5 pages, 4 figure
An Ultra-fast DOA Estimator with Circular Array Interferometer Using Lookup Table Method
The time-consuming phase ambiguity resolution makes the uniform circular array (UCA) interferometer not suitable for real-time direction-of-arrival (DOA) estimation. This paper introduces the lookup table (LUT) method to solve this problem. The key of the method is that we look up the ambiguity numbers instead of the eventual DOA from the table, and then the DOA is obtained by relatively small amount of calculation. This makes it possible that we are able to shrink the table size while maintain the DOA estimation accuracy. The table addresses cover all possible measured phase differences (PDs), which enables the method to be free of spatial scanning. Moreover, without adding frequency index to the lookup table, the estimator can realize wideband application. As an example, a field-programmable gate array (FPGA) based DOA estimator with the estimation time of 180 ns is presented, accompanied by the measured results. This method possesses the advantages of ultra-high speed, high accuracy and low memory usage
Morphological characterization of shocked porous material
Morphological measures are introduced to probe the complex procedure of shock
wave reaction on porous material. They characterize the geometry and topology
of the pixelized map of a state variable like the temperature. Relevance of
them to thermodynamical properties of material is revealed and various
experimental conditions are simulated. Numerical results indicate that, the
shock wave reaction results in a complicated sequence of compressions and
rarefactions in porous material. The increasing rate of the total fractional
white area roughly gives the velocity of a compressive-wave-series.
When a velocity is mentioned, the corresponding threshold contour-level of
the state variable, like the temperature, should also be stated. When the
threshold contour-level increases, becomes smaller. The area increases
parabolically with time during the initial period. The curve goes
back to be linear in the following three cases: (i) when the porosity
approaches 1, (ii) when the initial shock becomes stronger, (iii) when the
contour-level approaches the minimum value of the state variable. The area with
high-temperature may continue to increase even after the early
compressive-waves have arrived at the downstream free surface and some
rarefactive-waves have come back into the target body. In the case of energetic
material ... (see the full text)Comment: 3 figures in JPG forma
- …