37 research outputs found

    Dynamic Event-Triggered Consensus of Multi-agent Systems on Matrix-weighted Networks

    Full text link
    This paper examines event-triggered consensus of multi-agent systems on matrix-weighted networks, where the interdependencies among higher-dimensional states of neighboring agents are characterized by matrix-weighted edges in the network. Specifically, a distributed dynamic event-triggered coordination strategy is proposed for this category of generalized networks, in which an auxiliary system is employed for each agent to dynamically adjust the trigger threshold, which plays an essential role in guaranteeing that the triggering time sequence does not exhibit Zeno behavior. Distributed event-triggered control protocols are proposed to guarantee leaderless and leader-follower consensus for multi-agent systems on matrix-weighted networks, respectively. It is shown that that the spectral properties of matrix-valued weights are crucial in event-triggered mechanism design for matrix-weighted networks. Finally, simulation examples are provided to demonstrate the theoretical results

    On Stability and Consensus of Signed Networks: A Self-loop Compensation Perspective

    Full text link
    Positive semidefinite is not an inherent property of signed Laplacians, which renders the stability and consensus of multi-agent system on undirected signed networks intricate. Inspired by the correlation between diagonal dominance and spectrum of signed Laplacians, this paper proposes a self-loop compensation mechanism in the design of interaction protocol amongst agents and examines the stability/consensus of the compensated signed networks. It turns out that self-loop compensation acts as exerting a virtual leader on these agents that are incident to negative edges, steering whom towards origin. Analytical connections between self-loop compensation and the collective behavior of the compensated signed network are established. Necessary and/or sufficient conditions for predictable cluster consensus of signed networks via self-loop compensation are provided. The optimality of self-loop compensation is discussed. Furthermore, we extend our results to directed signed networks where the symmetry of signed Laplacian is not free. Simulation examples are provided to demonstrate the theoretical results

    Vector-valued Privacy-Preserving Average Consensus

    Full text link
    Achieving average consensus without disclosing sensitive information can be a critical concern for multi-agent coordination. This paper examines privacy-preserving average consensus (PPAC) for vector-valued multi-agent networks. In particular, a set of agents with vector-valued states aim to collaboratively reach an exact average consensus of their initial states, while each agent's initial state cannot be disclosed to other agents. We show that the vector-valued PPAC problem can be solved via associated matrix-weighted networks with the higher-dimensional agent state. Specifically, a novel distributed vector-valued PPAC algorithm is proposed by lifting the agent-state to higher-dimensional space and designing the associated matrix-weighted network with dynamic, low-rank, positive semi-definite coupling matrices to both conceal the vector-valued agent state and guarantee that the multi-agent network asymptotically converges to the average consensus. Essentially, the convergence analysis can be transformed into the average consensus problem on switching matrix-weighted networks. We show that the exact average consensus can be guaranteed and the initial agents' states can be kept private if each agent has at least one "legitimate" neighbor. The algorithm, involving only basic matrix operations, is computationally more efficient than cryptography-based approaches and can be implemented in a fully distributed manner without relying on a third party. Numerical simulation is provided to illustrate the effectiveness of the proposed algorithm

    Case report: Fully endoscopic microvascular decompression for glossopharyngeal neuralgia

    Get PDF
    With the advances in endoscopic technology, endoscopy is widely used in many neurosurgical procedures, such as microvascular decompression, which is an effective method to treat glossopharyngeal neuralgia, trigeminal neuralgia, and facial spasm. The purpose of this study was to determine the efficacy of fully endoscopic microvascular decompression in the treatment of glossopharyngeal neuralgia. We managed a patient with glossopharyngeal neuralgia in our department, whose main clinical manifestation was recurrent left ear and facial pain for 3 years. The patient underwent a fully endoscopic microvascular decompression. The pain in the left ear and face was significantly relieved postoperatively, and there was no recurrence at the 6-month follow-up evaluation. We describe a case of glossopharyngeal neuralgia that was successfully treated by fully endoscopic microvascular decompression, which showed that endoscopy has advantages in microvascular decompression, and fully endoscopic microvascular decompression is an effective method for glossopharyngeal neuralgia

    Endoscopic endonasal surgery for non-invasive pituitary neuroendocrinology tumors with incomplete pseudocapsule

    Get PDF
    BackgroundPituitary neuroendocrinology tumors (PitNETs) with pseudocapsule can be effectively removed by the pseudocapsule-based extracapsular resection technique. In the areas without pseudocapsule, the tumor cells can spread into the adjacent tissues at the cellular level, which brings a great challenge to achieving total tumor resection.MethodsOur surgical strategy for PitNETs with an incomplete pseudocapsule is to combine the pseudocapsule-based extracapsular resection technique with the intensive excision technique for the removal of the tumor. Specifically, the pseudocapsule-based extracapsular resection technique is applied in the areas with pseudocapsule, while in the areas without pseudocapsule, the intensive excision technique bounded by adjacent normal structures is adopted. Moreover, a pathological examination was performed to determine the situations of pseudocapsule and tumor cell remnant.ResultsAll growth hormone-secreting PitNETs achieved biochemical remission after surgery. There was no deterioration of pituitary functions postoperatively, and the preoperative hypopituitarism had improved in all patients postoperatively. In total, two cases suffered a transient diabetes insipidus, and intraoperative cerebrospinal fluid leakage was observed in two cases but no postoperative cerebrospinal fluid leakage in all cases. There was no recurrence during the follow-up. The fragmental pseudocapsule and small tumor remnants were found in the majority of suspicious tissues by histological staining.ConclusionThe effectiveness and safety of the surgical strategy were preliminarily explored for removing PitNETs without incomplete pseudocapsules. In overview, the pseudocapsule-based extracapsular resection technique is applied in areas with pseudocapsule, while the intensive excision bounded by adjacent normal structures is adopted in other areas

    Research on Friction and Wear Properties of Rubber Composites by Adding Glass Fiber during Mixing

    No full text
    GF/rubber composites have sound insulation characteristics, heat resistance, good corrosion resistance, and high mechanical strength. The compounding machine’s long working hours will inevitably wear the metal on the end face of the compounding machine. The wear of the end face metal will increase the gap between the chamber and the end face, which will lead to material leakage, reduce the mixing effect, and eventually affect the performance of GF/rubber composites. To ensure the implementation of GF/rubber composites, it is necessary to study the frictional wear behavior of GF/rubber composites on metals. In this paper, the effect of blending rubber with different amounts of GF on the frictional wear of metal on the end face was analyzed from the perspective of the formulation process, and the ratio of corrosion wear and abrasive wear was calculated for the first time

    Bearing Characteristics of Multi-Wing Pile Foundations under Lateral Loads in Dapeng Bay Silty Clay

    No full text
    This study provides a theoretical basis for reinforcement of the soil around multi-wing piles. Limit analysis was used to determine the ultimate lateral capacity (ULC) of three- and four-wing piles in Dapeng Bay silty clay. The effects of the pile–soil interaction coefficient α, wing width Bw, and lateral-load direction β on the ULC of the pile and the shear plastic zone range of the surrounding soil were analyzed. The normalized ULC of the three-wing pile decreased when the wing–diameter ratio increased. When Bw was 0.15 m and α was 0.4, the ULC of the four-wing pile was 19% higher than that of the three-wing pile. As β increased, the normalized ULC of the four-wing pile decreased, whereas that of the three-wing pile went through a minimum at 30°. The size of the soil shear plastic ring did not depend on α for either pile type; it increased around the three-wing (but not the four-wing) pile with changes in β. However, there was also a double plastic ring of broken soil around the four-wing pile. The four-wing pile had a more symmetrical influence on the soil around the pile than the three-wing pile
    corecore