6,223 research outputs found
Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation
Universal quantum error-correction requires the ability of manipulating
entanglement of five or more particles. Although entanglement of three or four
particles has been experimentally demonstrated and used to obtain the extreme
contradiction between quantum mechanics and local realism, the realization of
five-particle entanglement remains an experimental challenge. Meanwhile, a
crucial experimental challenge in multi-party quantum communication and
computation is the so-called open-destination teleportation. During
open-destination teleportation, an unknown quantum state of a single particle
is first teleported onto a N-particle coherent superposition to perform
distributed quantum information processing. At a later stage this teleported
state can be readout at any of the N particles for further applications by
performing a projection measurement on the remaining N-1 particles. Here, we
report a proof-of-principle demonstration of five-photon entanglement and
open-destination teleportation. In the experiment, we use two entangled photon
pairs to generate a four-photon entangled state, which is then combined with a
single photon state to achieve the experimental goals. The methods developed in
our experiment would have various applications e.g. in quantum secret sharing
and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200
Quantum time of flight distribution for cold trapped atoms
The time of flight distribution for a cloud of cold atoms falling freely
under gravity is considered. We generalise the probability current density
approach to calculate the quantum arrival time distribution for the mixed state
describing the Maxwell-Boltzmann distribution of velocities for the falling
atoms. We find an empirically testable difference between the time of flight
distribution calculated using the quantum probability current and that obtained
from a purely classical treatment which is usually employed in analysing time
of flight measurements. The classical time of flight distribution matches with
the quantum distribution in the large mass and high temperature limits.Comment: 6 pages, RevTex, 4 eps figure
Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope
We demonstrate Josephson tunneling in vacuum tunnel junctions formed between
a superconducting scanning tunneling microscope tip and a Pb film, for junction
resistances in the range 50-300 k. We show that the superconducting
phase dynamics is dominated by thermal fluctuations, and that the Josephson
current appears as a peak centered at small finite voltages. In the presence of
microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to
higher voltages with increasing rf power, in agreement with theory.Comment: 4 pages, REVTeX, submitted to PR
A Factorization Law for Entanglement Decay
We present a simple and general factorization law for quantum systems shared
by two parties, which describes the time evolution of entanglement upon passage
of either component through an arbitrary noisy channel. The robustness of
entanglement-based quantum information processing protocols is thus easily and
fully characterized by a single quantity.Comment: 4 pages, 5 figure
Highly sensitive, stretchable and durable strain sensors based on conductive double-network polymer hydrogels
Hydrogel-based strain sensors have been attracting immense attention for wearable electronic devices owing to their intrinsic soft characteristics and flexibility. However, developing hydrogel sensors with hightensile strength, stretchability, and strain sensitivity remains a great challenge. Herein, we report a technique to synthesize highly sensitive hydrogel-based strain sensors by integrating carbon nanofibers (CNFs) with a double-network (DN) polymer hydrogel matrix comprising of a physically cross-linked agar network and a covalently cross-linked polyacrylamide (PAAm) network. The resultant nanocomposite sensors display superior piezoresistive sensitivity with a hightrue gauge factor (GFT = 1.78) at an ultrahigh strain of 1,000%, a fast response time and linear correlation of ln(R/R0) and ln(L/L0) up to 1,000% strain. Most significantly, these sensors possess highmechanical strength (~0.6 MPa) and superb durability (>1,000 cycles at strain of 100%), stemming from the effective energy dissipation mechanism of the first agar network acting as sacrificial bonds and the CNFs serving as dynamic nanofillers. The combination of highstrain sensitivity and ultrahigh stretchability of hydrogel sensors makes it possible to sense both small mechanical deformations induced by human motions and large strain up to 1,000%
Experimental Quantum Teleportation of a Two-Qubit Composite System
Quantum teleportation, a way to transfer the state of a quantum system from
one location to another, is central to quantum communication and plays an
important role in a number of quantum computation protocols. Previous
experimental demonstrations have been implemented with photonic or ionic
qubits. Very recently long-distance teleportation and open-destination
teleportation have also been realized. Until now, previous experiments have
only been able to teleport single qubits. However, since teleportation of
single qubits is insufficient for a large-scale realization of quantum
communication and computation2-5, teleportation of a composite system
containing two or more qubits has been seen as a long-standing goal in quantum
information science. Here, we present the experimental realization of quantum
teleportation of a two-qubit composite system. In the experiment, we develop
and exploit a six-photon interferometer to teleport an arbitrary polarization
state of two photons. The observed teleportation fidelities for different
initial states are all well beyond the state estimation limit of 0.40 for a
two-qubit system. Not only does our six-photon interferometer provide an
important step towards teleportation of a complex system, it will also enable
future experimental investigations on a number of fundamental quantum
communication and computation protocols such as multi-stage realization of
quantum-relay, fault-tolerant quantum computation, universal quantum
error-correction and one-way quantum computation.Comment: 16pages, 4 figure
Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates
Physical effects of bilayer coupling on the tunneling spectroscopy of high
T cuprates are investigated. The bilayer coupling separates the bonding
and antibonding bands and leads to a splitting of the coherence peaks in the
tunneling differential conductance. However, the coherence peak of the bonding
band is strongly suppressed and broadened by the particle-hole asymmetry in the
density of states and finite quasiparticle life-time, and is difficult to
resolve by experiments. This gives a qualitative account why the bilayer
splitting of the coherence peaks was not clearly observed in tunneling
measurements of double-layer high-T oxides.Comment: 4 pages, 3 figures, to be published in PR
Inherent Inhomogeneities in Tunneling Spectra of BSCCO Crystals in the Superconducting State
Scanning Tunneling Spectroscopy on cleaved BSCCO(2212) single crystals reveal
inhomogeneities on length-scales of 30 . While most of the surface
yields spectra consistent with a d-wave superconductor, small regions show a
doubly gapped structure with both gaps lacking coherence peaks and the larger
gap having a size typical of the respective pseudo-gap for the same sample.Comment: 4 pages, 4 figure
Anti-phase Modulation of Electron- and Hole-like States in Vortex Core of Bi2Sr2CaCu2Ox Probed by Scanning Tunneling Spectroscopy
In the vortex core of slightly overdoped Bi2Sr2CaCu2Ox, the electron-like and
hole-like states have been found to exhibit spatial modulations in anti-phase
with each other along the Cu-O bonding direction. Some kind of
one-dimensionality has been observed in the vortex core, and it is more clearly
seen in differential conductance maps at lower biases below +-9 mV
Staggered local density-of-states around the vortex in underdoped cuprates
We have studied a single vortex with the staggered flux (SF) core based on
the SU(2) slave-boson theory of high superconductors. We find that
whereas the center in the vortex core is a SF state, as one moves away from the
core center, a correlated staggered modulation of the hopping amplitude
and pairing amplitude becomes predominant. We predict that in this
region, the local density-of-states (LDOS) exhibits staggered modulation when
measured on the bonds, which may be directly detected by STM experiments.Comment: 4 pages, 3 figure
- …