958 research outputs found

    Esophageal atypical carcinoid tumor with tracheal invasion

    Get PDF

    Aerosolized Colistin for the Treatment of Multidrug-resistant Acinetobacter baumannii Pneumonia: Experience in a Tertiary Care Hospital in Northern Taiwan

    Get PDF
    Background/PurposeVentilator-associated pneumonia (VAP) due to multidrug-resistant (MDR) Acinetobacter baumannii in critically ill patients presents an emerging challenge to clinicians. Administration of aerosolized colistin as an adjunctive therapy is one therapeutic option mentioned in limited evidence-based studies. This study aimed to evaluate the effectiveness of adjunctive aerosolized colistin treatment for VAP due to MDR pathogens.MethodsWe retrospectively reviewed the medical records of patients who had received aerosolized colistin for treatment of VAP due to MDR A. baumannii in our hospital from August to December 2008.ResultsForty-five patients were enrolled in our study. The mean age was 71 ± 15 years. The mean Acute Physiological and Chronic Health Evaluation II (APACHE II) scores on the day of intensive care unit admission and on the first day of aerosolized colistin administration were 22.5 ± 6.7 and 18.9 ± 5.7, respectively. The mean duration of intensive care unit stay was 34 ± 16 days. The mean daily dosage of aerosolized colistin was 4.29 ± 0.82 million IU, and the mean duration of administration was 10.29 days. Seventeen patients (37.8%) had a favorable microbiological outcome and 26 (57.8%) showed a clinical response. Mortality due to all causes was 42.2%. No adverse effects related to inhaled colistin were recorded.ConclusionAerosolized colistin may be considered as an adjunct to intravenous treatments in patients with VAP due to colistin-susceptible MDR A. baumannii in critically ill patients

    Clinical characteristics and treatment outcomes of patients with tubo-ovarian abscess at a tertiary care hospital in Northern Taiwan

    Get PDF
    Background/PurposeControversy exists regarding the need for surgical intervention in patients with tubo-ovarian abscess (TOA). This study was aimed at investigating the clinical characteristics and treatment outcomes in patients with TOA at a tertiary care hospital in Taiwan.MethodsThe medical records of 83 patients who presented at the hospital with TOA between January 1, 2006, and December 31, 2007, were retrospectively reviewed. Outcomes of patients who received medical treatment alone or underwent surgical intervention were analyzed using univariate and logistic regression analyses.ResultsAmong the 83 patients with TOA, 13 patients (15.7%) underwent surgical intervention, and 70 patients (84.3%) received medical treatment alone. Significant variables related to surgical treatment in the univariate analysis were length of stay (short vs. long; t = −2.267, p = 0.026), department of admission (emergency room vs. outpatient department; χ2 = 7.459, p = 0.006), number of live births (nulliparous vs. multiparous; χ2 = 18.202, p = 0.001), and C-reactive protein (CRP) level (high vs. low; t = −2.250, p = 0.028). Logistic regression analysis performed to determine influential factors for surgical treatment showed that the operation odds ratio of three to four live births versus no live births was 33.995 (p = 0.043) and that of two live births versus no live births was 13.598 (p = 0.026).ConclusionPatients with TOA who underwent surgery had a longer duration of hospitalization. Among the patients who underwent surgical intervention, those admitted to the emergency room had higher CRP levels and were more likely to be multiparous

    New Molecular Mechanism for Ullrich Congenital Muscular Dystrophy: A Heterozygous In-Frame Deletion in the COL6A1 Gene Causes a Severe Phenotype

    Get PDF
    Recessive mutations in two of the three collagen VI genes, COL6A2 and COL6A3, have recently been shown to cause Ullrich congenital muscular dystrophy (UCMD), a frequently severe disorder characterized by congenital muscle weakness with joint contractures and coexisting distal joint hyperlaxity. Dominant mutations in all three collagen VI genes had previously been associated with the considerably milder Bethlem myopathy. Here we report that a de novo heterozygous deletion of the COL6A1 gene can also result in a severe phenotype of classical UCMD precluding ambulation. The internal gene deletion occurs near a minisatellite DNA sequence in intron 8 that removes 1.1 kb of genomic DNA encompassing exons 9 and 10. The resulting mutant chain contains a 33–amino acid deletion near the amino-terminus of the triple-helical domain but preserves a unique cysteine in the triple-helical domain important for dimer formation prior to secretion. Thus, dimer formation and secretion of abnormal tetramers can occur and exert a strong dominant negative effect on microfibrillar assembly, leading to a loss of normal localization of collagen VI in the basement membrane surrounding muscle fibers. Consistent with this mechanism was our analysis of a patient with a much milder phenotype, in whom we identified a previously described Bethlem myopathy heterozygous in-frame deletion of 18 amino acids somewhat downstream in the triple-helical domain, a result of exon 14 skipping in the COL6A1 gene. This deletion removes the crucial cysteine, so that dimer formation cannot occur and the abnormal molecule is not secreted, preventing the strong dominant negative effect. Our studies provide a biochemical insight into genotype-phenotype correlations in this group of disorders and establish that UCMD can be caused by dominantly acting mutations

    Effects on Collagen VI mRNA Stability and Microfibrillar Assembly of Three COL6A2 Mutations in Two Families with Ullrich Congenital Muscular Dystrophy

    Get PDF
    We recently reported a severe deficiency in collagen type VI, resulting from recessive mutations of the COL6A2 gene, in patients with Ullrich congenital muscular dystrophy. Their parents, who are all carriers of one mutant allele, are unaffected, although heterozygous mutations in collagen VI caused Bethlem myopathy. Here we investigated the consequences of three COL6A2 mutations in fibroblasts from patients and their parents in two Ullrich families. All three mutations lead to nonsense-mediated mRNA decay. However, very low levels of undegraded mutant mRNA remained in patient B with compound heterozygous mutations at the distal part of the triple-helical domain, resulting in deposition of abnormal microfibrils that cannot form extensive networks. This observation suggests that the C-terminal globular domain is not essential for triple-helix formation but is critical for microfibrillar assembly. In all parents, the COL6A2 mRNA levels are reduced to 57-73% of the control, but long term collagen VI matrix depositions are comparable with that of the control. The almost complete absence of abnormal protein and near-normal accumulation of microfibrils in the parents may account for their lack of myopathic symptoms

    Effects of acid hydrolysis waste liquid recycle on preparation of microcrystalline cellulose

    Get PDF
    Large amounts of acidic waste are produced on the industrial scale during hydrolysis of partially amorphous cellulose to produce microcrystalline cellulose (MCC). The essential disposal and treatment of this highly acidic liquid wastes the acid feedstock and increases the production cost. To maximize the use of acid without sacrificing the MCC product quality, this project reports a successful attempt to recycle the acid hydrolysis waste liquid, focusing on the impact of waste recycling on MCC morphology and reducing sugar in the hydrolysate. The results showed that when the waste liquid is recycled 1-5 times, no metal accumulation occurred while cellulose particles remained intact, maintaining their shape and size. Their extent of crystallinity remained nearly constant, even increasing slightly with up to three cycles. The concentration of reducing sugar showed growth when recycling the waste liquid up to three times, although not quite to the levels that would allow for its cost-effective fermentation. The acid amount to be added at the start of each cycle was near 50% of that used on the first stage

    Initiation of skin basement membrane formation at the epidermo-dermal interface involves assembly of laminins through binding to cell membrane receptors

    Get PDF
    To study the mechanism of basement membrane formation, we determined by immunochemistry temporal and spatial expression of laminin-5 (Ln-5), laminin-1 (Ln-1) and their integrin receptors during early skin morphogenesis. A 3-dimensional skin culture was used that allows the study of the sequential molecular events of basement membrane formation at the epidermodermal interface. During early anchorage of keratinocytes to the extracellular matrix there is expression of Ln-5, BP-230 antigen and &#945;3, &#946;1 integrin subunits. During epidermal stratification and prior to the formation of the lamina densa there is assembly of Ln-5, Ln-1, collagen IV and nidogen accompanied by keratinocyte basal clustering of &#945;2, &#945;3, &#945;6, &#946;1, and &#946;4 integrin subunits. The assembly pattern of Ln-1 and Ln-5 can be disturbed with functional antibodies against the &#946;1 (AIIB2) and &#945;6 (GoH3) integrin subunits. Ln-1 assembly can also be disturbed with antibodies against its E8 domain and by competitive inhibition with a synthetic peptide (AG-73) derived from its G-4 domain. Quantitative RT-PCR showed that the dermis contributes about 80% of the laminin &#947;1 chain mRNA while 20% is produced by the epidermis which emphasizes its dual tissue origin and the major contribution of the mesenchyma in laminin production. The laminin &#947;2 chain mRNA, present in Ln-5, was mostly of epidermal origin. This study presents evidence that during the initiation of basement membrane formation, laminins bind to keratinocyte plasma membrane receptors and thus may serve as nucleation sites for further polymerization of these compounds by a self-assembly process.</p

    Design of microarray probes for virus identification and detection of emerging viruses at the genus level

    Get PDF
    BACKGROUND: Most virus detection methods are geared towards the detection of specific single viruses or just a few known targets, and lack the capability to uncover the novel viruses that cause emerging viral infections. To address this issue, we developed a computational method that identifies the conserved viral sequences at the genus level for all viral genomes available in GenBank, and established a virus probe library. The virus probes are used not only to identify known viruses but also for discerning the genera of emerging or uncharacterized ones. RESULTS: Using the microarray approach, the identity of the virus in a test sample is determined by the signals of both genus and species-specific probes. The genera of emerging and uncharacterized viruses are determined based on hybridization of the viral sequences to the conserved probes for the existing viral genera. A detection and classification procedure to determine the identity of a virus directly from detection signals results in the rapid identification of the virus. CONCLUSION: We have demonstrated the validity and feasibility of the above strategy with a small number of viral samples. The probe design algorithm can be applied to any publicly available viral sequence database. The strategy of using separate genus and species probe sets enables the use of a straightforward virus identity calculation directly based on the hybridization signals. Our virus identification strategy has great potential in the diagnosis of viral infections. The virus genus and specific probe database and the associated summary tables are available a

    Observation of eight-photon entanglement

    Full text link
    Using ultra-bright sources of pure-state entangled photons from parametric down conversion, an eight-photon interferometer and post-selection detection, we demonstrate the ability to experimentally manipulate eight individual photons and report the creation of an eight-photon Schr\"odinger cat state with an observed fidelity of 0.708±0.0160.708 \pm 0.016.Comment: 6 pages, 4 figure

    Verifying expressed transcript variants by detecting and assembling stretches of consecutive exons

    Get PDF
    We herein describe an integrated system for the high-throughput analysis of splicing events and the identification of transcript variants. The system resolves individual splicing events and elucidates transcript variants via a pipeline that combines aspects such as bioinformatic analysis, high-throughput transcript variant amplification, and high-resolution capillary electrophoresis. For the 14 369 human genes known to have transcript variants, minimal primer sets were designed to amplify all transcript variants and examine all splicing events; these have been archived in the ASprimerDB database, which is newly described herein. A high-throughput thermocycler, dubbed GenTank, was developed to simultaneously perform thousands of PCR amplifications. Following the resolution of the various amplicons by capillary gel electrophoresis, two new computer programs, AmpliconViewer and VariantAssembler, may be used to analyze the splicing events, assemble the consecutive exons embodied by the PCR amplicons, and distinguish expressed versus putative transcript variants. This novel system not only facilitates the validation of putative transcript variants and the detection of novel transcript variants, it also semi-quantitatively measures the transcript variant expression levels of each gene. To demonstrate the system’s capability, we used it to resolve transcript variants yielded by single and multiple splicing events, and to decipher the exon connectivity of long transcripts
    corecore