5,253 research outputs found

    Performance of state-of-the-art C3S European seasonal climate forecast models for mean and extreme precipitation over Africa

    Get PDF
    Seasonal hydrological forecasts at high spatial and temporal resolution can help manage water resources and mitigate impacts of extreme events but are dependent on skillful and operational seasonal forecasts from climate models. In this study, we evaluate precipitation forecasts from five operational climate models with a potential to drive hydrological forecasts: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UK-Met), Météo France, Deutscher Wetterdienst, and Centro Euro-Mediterraneo sui Cambiamenti Climatici. The Multi-Source Weighted-Ensemble Precipitation is used as a reference data set to evaluate the model skill. The performance of individual models is evaluated on daily, weekly, monthly, seasonal, and climatological periods, and for selected target months, lead-times and drought events, and compared to unweighted and skill-weighted multi-model ensemble mean forecast. For all models, the lead 1-month forecast can replicate the climatological mean, monthly mean, and monthly anomaly precipitation, although much of this skill originates from the first week of the forecast. The skill drops rapidly for lead 2-month and longer and is highest in drier regions and seasons. The forecast skill of monthly meteorological drought events at lead 1-month is modest. All models represent the monthly variation in the length of wet and dry spell days at lead 1-month, but the skill is weak for heavy and very heavy precipitation days. ECMWF is found to be the most skillful model, followed by the UK-Met, although the multi-model weighted average provides the highest performance compared to individual models and the un-weighted multi-model mean

    Multiple dynamical time-scales in networks with hierarchically nested modular organization

    Full text link
    Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intra-modular and slow inter-modular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.Comment: 10 pages, 4 figure

    Surveillance for seasonal influenza virus prevalence in hospitalized children with lower respiratory tract infection in Guangzhou, China during the post-pandemic era.

    Get PDF
    Influenza A(H1N1)pdm09, A(H3N2) and B viruses have co-circulated in the human population since the swine-origin human H1N1 pandemic in 2009. While infections of these subtypes generally cause mild illnesses, lower respiratory tract infection (LRTI) occurs in a portion of children and required hospitalization. The aim of our study was to estimate the prevalence of these three subtypes and compare the clinical manifestations in hospitalized children with LRTI in Guangzhou, China during the post-pandemic period. METHODS: Children hospitalized with LRTI from January 2010 to December 2012 were tested for influenza A/B virus infection from their throat swab specimens using real-time PCR and the clinical features of the positive cases were analyzed. RESULTS: Of 3637 hospitalized children, 216 (5.9%) were identified as influenza A or B positive. Infection of influenza virus peaked around March in Guangzhou each year from 2010 to 2012, and there were distinct epidemics of each subtype. Influenza A(H3N2) infection was more frequently detected than A(H1N1)pdm09 and B, overall. The mean age of children with influenza A virus (H1N1/H3N2) infection was younger than those with influenza B (34.4 months/32.5 months versus 45 months old; p<0.005). Co-infections of influenza A/ B with mycoplasma pneumoniae were found in 44/216 (20.3%) children. CONCLUSIONS: This study contributes the understanding to the prevalence of seasonal influenza viruses in hospitalized children with LRTI in Guangzhou, China during the post pandemic period. High rate of mycoplasma pneumoniae co-infection with influenza viruses might contribute to severe disease in the hospitalized children.published_or_final_versio

    Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance

    Get PDF
    Adiponectin plays a key role in the regulation of the whole-body energy homeostasis by modulating glucose and lipid metabolism. Although obesity-induced reduction of adiponectin expression is primarily ascribed to a transcriptional regulation failure, the underlying mechanisms are largely undefined. Here we show that DNA hypermethylation of a particular region of the adiponectin promoter suppresses adiponectin expression through epigenetic control and, in turn, exacerbates metabolic diseases in obesity. Obesity-induced, pro-inflammatory cytokines promote DNMT1 expression and its enzymatic activity. Activated DNMT1 selectively methylates and stimulates compact chromatin structure in the adiponectin promoter, impeding adiponectin expression. Suppressing DNMT1 activity with a DNMT inhibitor resulted in the amelioration of obesity-induced glucose intolerance and insulin resistance in an adiponectin-dependent manner. These findings suggest a critical role of adiponectin gene epigenetic control by DNMT1 in governing energy homeostasis, implying that modulating DNMT1 activity represents a new strategy for the treatment of obesity-related diseases.published_or_final_versio

    First direct observation of the Van Hove singularity in the tunneling spectra of cuprates

    Get PDF
    In two-dimensional lattices the electronic levels are unevenly spaced, and the density of states (DOS) displays a logarithmic divergence known as the Van Hove singularity (VHS). This is the case in particular for the layered cuprate superconductors. The scanning tunneling microscope (STM) probes the DOS, and is therefore the ideal tool to observe the VHS. No STM study of cuprate superconductors has reported such an observation so far giving rise to a debate about the possibility of observing directly the normal state DOS in the tunneling spectra. In this study, we show for the first time that the VHS is unambiguously observed in STM measurements performed on the cuprate Bi-2201. Beside closing the debate, our analysis proves the presence of the pseudogap in the overdoped side of the phase diagram of Bi-2201 and discredits the scenario of the pseudogap phase crossing the superconducting dome.Comment: 4 pages, 4 figure

    Atomic-scale images of charge ordering in a mixed-valence manganite

    Get PDF
    Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the 'colossal' magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference

    Phosphorylation of LCRMP-1 by GSK3β Promotes Filopoda Formation, Migration and Invasion Abilities in Lung Cancer Cells

    Get PDF
    LCRMP-1, a novel isoform of CRMP-1, can promote cancer cell migration, invasion and associate with poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). However, the underlying regulatory mechanisms of LCRMP-1 in cancer cell invasiveness still remain obscure. Here, we report that GSK3β can phosphorylate LCRMP-1 at Thr-628 in consensus sequences and this phosphorylation is crucial for function of LCRMP-1 to promote filopodia formation, migration and invasion in cancer cells. Impediment of Thr-628 phosphorylation attenuates the stimulatory effects of LCRMP-1 on filopodia forming, migration and invasion abilities in cancer cells; simultaneously, kinase-dead GSK3β diminishes regulation of LCRMP-1 on cancer cell invasion. Furthermore, we also found that patients with low-level Ser-9-phosphorylated GSK3β expression and high-level LCRMP-1 expression have worse overall survival than those with high-level inactive GSK3β expressions and low-level LCRMP-1 expressions (P<0.0001). Collectively, these results demonstrate that GSK3β-dependent phosphorylation of LCRMP-1 provides an important mechanism for regulation of LCRMP-1 on cancer cell invasiveness and clinical outcome

    Discovery of microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x

    Full text link
    The parent compounds of the copper oxide high-Tc superconductors are unusual insulators. Superconductivity arises when they are properly doped away from stoichiometry1. In Bi2Sr2CaCu2O8+x, superconductivity results from doping with excess oxygen atoms, which introduce positive charge carriers (holes) into the CuO2 planes, where superconductivity is believed to originate. The role of these oxygen dopants is not well understood, other than the fact that they provide charge carriers. However, it is not even clear how these charges distribute in the CuO2 planes. Accordingly, many models of high-Tc superconductors simply assume that the charge carriers introduced by doping distribute uniformly, leading to an electronically homogeneous system, as in ordinary metals. Here we report the observation of an electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x using scanning tunnelling microscopy/spectroscopy. This inhomogeneity is manifested as spatial variations in both the local density of states spectrum and the superconducting energy gap. These variations are correlated spatially and vary on a surprisingly short length scale of ~ 14 Angs. Analysis suggests that the inhomogeneity observed is a consequence of proximity to a Mott insulator resulting in poor screening of the charge potentials associated with the oxygen ions left behind in the BiO plane after doping. Hence this experiment is a direct probe of the local nature of the superconducting state, which is not easily accessible by macroscopic measurements.Comment: 6 pages, 4 figure

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure

    Determinants of postnatal spleen tissue regeneration and organogenesis

    Get PDF
    Abstract The spleen is an organ that filters the blood and is responsible for generating blood-borne immune responses. It is also an organ with a remarkable capacity to regenerate. Techniques for splenic auto-transplantation have emerged to take advantage of this characteristic and rebuild spleen tissue in individuals undergoing splenectomy. While this procedure has been performed for decades, the underlying mechanisms controlling spleen regeneration have remained elusive. Insights into secondary lymphoid organogenesis and the roles of stromal organiser cells and lymphotoxin signalling in lymph node development have helped reveal similar requirements for spleen regeneration. These factors are now considered in the regulation of embryonic and postnatal spleen formation, and in the establishment of mature white pulp and marginal zone compartments which are essential for spleen-mediated immunity. A greater understanding of the cellular and molecular mechanisms which control spleen development will assist in the design of more precise and efficient tissue grafting methods for spleen regeneration on demand. Regeneration of organs which harbour functional white pulp tissue will also offer novel opportunities for effective immunotherapy against cancer as well as infectious diseases
    • …
    corecore