45 research outputs found

    Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although 70% (or 2/3) partial hepatectomy (PH) is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH) has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s) under this milder but clinically more relevant condition.</p> <p>Results</p> <p>Proteins from sham-operated mouse livers and livers regenerating for 24 h after 50% PH were separated by SDS-PAGE and analyzed by nanoUPLC-Q-Tof mass spectrometry. Compared to sham-operated group, there were totally 87 differentially expressed proteins (with 50 up-regulated and 37 down-regulated ones) identified in the regenerating mouse livers, most of which have not been previously related to liver regeneration. Remarkably, over 25 differentially expressed proteins were located at mitochondria. Several of the mitochondria-resident proteins which play important roles in citric acid cycle, oxidative phosphorylation and ATP production were found to be down-regulated, consistent with the recently-proposed model in which the reduction of ATP content in the remnant liver gives rise to early stress signals that contribute to the onset of liver regeneration. Pathway analysis revealed a central role of c-Myc in the regulation of liver regeneration.</p> <p>Conclusions</p> <p>Our study provides novel evidence for mitochondria as a pivotal organelle that is connected to liver regeneration, and lays the foundation for further studies on key factors and pathways involved in liver regeneration following 50% PH, a condition frequently used for partial liver transplantation and conservative liver resection.</p

    Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stem cell-based therapy to treat liver diseases is a focus of current research worldwide. So far, most such studies depend on rodent hepatic failure models. The purpose of this study was to isolate mesenchymal stem cells from human placenta (hPMSCs) and determine their therapeutic potential for treating Chinese experimental miniature pigs with acute liver failure (ALF).</p> <p>Methods</p> <p>hPMSCs were isolated and analyzed for their purity and differentiation potential before being employed as the donor cells for transplantation. ALF models of Chinese experimental miniature pigs were established and divided into four groups: no cell transplantation; hPMSCs transplantation via the jugular vein; X-ray-treated hPMSCs transplantation via the portal vein; and hPMSCs transplantation via the portal vein. The restoration of biological functions of the livers receiving transplantation was assessed via a variety of approaches such as mortality rate determination, serum biochemical analysis, and histological, immunohistochemical, and genetic analysis.</p> <p>Results</p> <p>hPMSCs expressed high levels of CD29, CD73, CD13, and CD90, had adipogenic, osteogenic, and hepatic differentiation potential. They improved liver functions <it>in vivo </it>after transplantation into the D-galactosamine-injured pig livers as evidenced by the fact that ALT, AST, ALP, CHE, TBIL, and TBA concentrations returned to normal levels in recipient ALF pigs. Meanwhile, histological data revealed that transplantation of hPMSCs via the portal vein reduced liver inflammation, decreased hepatic denaturation and necrosis, and promoted liver regeneration. These ameliorations were not found in the other three groups. The result of 7-day survival rates suggested that hPMSCs transplantation via the portal vein was able to significantly prolong the survival of ALF pigs compared with the other three groups. Histochemistry and RT-PCR results confirmed the presence of transplanted human cells in recipient pig livers (Groups III, IV).</p> <p>Conclusions</p> <p>Our data revealed that hPMSCs could not only differentiate into hepatocyte-like cells <it>in vitro </it>and <it>in vivo</it>, but could also prolong the survival time of ALF pigs. Regarding the transplantation pathways, the left branch of the portal vein inside the liver was superior to the jugular vein pathway. Thus, hPMSCs transplantation through the portal vein by B-ultrasonography may represent a superior approach for treating liver diseases.</p

    On determination of cointegration ranks

    Get PDF
    We propose a new method to determine the cointegration rank in the error correction model of Engle and Granger (1987). To this end, we first estimate the cointegration vectors in terms of a residual-based principal component analysis. Then the cointegration rank, together with the lag order, is determined by a penalized goodness-of-fit measure. We have shown that the estimated cointegration vectors are asymptotically normal, and our estimation for the cointegration rank is consistent. Our approach is more robust than the conventional likelihood based methods, as we do not impose any assumption on the form of the error distribution in the model, and furthermore we allow the serial dependence in the error sequence. The proposed methodology is illustrated with both simulated and real data examples. The advantage of the new method is particularly pronounced in the simulation with non-Gaussian and/or serially dependent errors

    Decreased expression of Na+-H+ exchanger isoforms 1 and 3 in denervated spontaneously hypertensive rat kidney

    No full text
    To determine whether the sympathetic nerve plays a role in the regulation of Na+-H+ exchange (NHE) in the kidney of spontaneously hypertensive rats (SHR), we investigated the expression of NHE and NHE regulatory protein family (NHERF) in the denervated kidneys compared with intact kidneys. Twelve-week-old male SHR and age-matched Wistar Kyoto (WKY) rats were used. SHR were randomly assigned to the renal denervated (RDNX, n = 8) or Sham (n = 8) groups. The protein and mRNA expression of NHE1, NHE3, NHERF1 and NHERF2 were assessed in the kidney of the groups. Following the renal denervation, immunohistochemistry and western blot analysis showed that NHE1 and NHE3 protein were significantly decreased in the kidney compared with Sham group. NHERF1 protein expression was significantly increased in RDNX compared with Sham group, whereas NHERF2 protein expression was significantly decreased after renal denervation. Similar results were observed at the mRNA level of NHE1, NHE3, NHERF1 and NHERF2 expression. The present findings suggest that the renal sympathetic nervous system plays a role in the regulation of NHE1 and NHE3 in the kidney of SHR, and NHERF1 may be involved in the expression of NHE3 in the kidney of SHR

    MicroRNA-9 Enhanced Cisplatin Sensitivity in Nonsmall Cell Lung Cancer Cells by Regulating Eukaryotic Translation Initiation Factor 5A2

    No full text
    We determined the role of microRNA (miR)-9 in regulating cisplatin chemoresistance in nonsmall cell lung cancer (NSCLC) cells. miR-9 and eukaryotic translation initiation factor 5A2 (eIF5A2) levels were examined by reverse transcription–quantitative PCR. Cell Counting Kit-8 and the 5-ethynyl-2′-deoxyuridine (EdU) assay were used to determine the effects of miR-9 mimic or inhibitor on NSCLC cell proliferation and viability, respectively. Bioinformatics was used to analyze the relationship between miR-9 and eIF5A2. Flow cytometry was used to analyze the percentage of apoptotic cells. miR-9 mimic enhanced cisplatin sensitivity, while miR-9 inhibitor produced the opposite result. eIF5A2 was identified as a potential target of miR-9, where miR-9 regulated eIF5A2 expression at mRNA and protein level. miR-9 mimic decreased the expression of eIF5A2 mRNA and protein, while miR-9 inhibitor increased eIF5A2 expression. eIF5A2 knockdown resolved the effects of miR-9 mimic or inhibitor on cisplatin sensitivity. miR-9 may be a potential biomarker for enhancing cisplatin sensitivity by regulating eIF5A2 in NSCLC cells

    GFP Labeling and Hepatic Differentiation Potential of Human Placenta-Derived Mesenchymal Stem Cells

    No full text
    Background: Stem cell-based therapy in liver diseases has received increasing interest over the past decade, but direct evidence of the homing and implantation of transplanted cells is conflicting. Reliable labeling and tracking techniques are essential but lacking. The purpose of this study was to establish human placenta-derived mesenchymal stem cells (hPMSCs) expressing green fluorescent protein (GFP) and to assay their hepatic functional differentiation in vitro. Methods: The GFP gene was transduced into hPMSCs using a lentivirus to establish GFP+ hPMSCs. GFP+ hPMSCs were analyzed for their phenotypic profile, viability and adipogenic, osteogenic and hepatic differentiation. The derived GFP+ hepatocyte-like cells were evaluated for their metabolic, synthetic and secretory functions, respectively. Results: GFP+ hPMSCs expressed high levels of HLA I, CD13, CD105, CD73, CD90, CD44 and CD29, but were negative for HLA II, CD45, CD31, CD34, CD133, CD271 and CD79. They possessed adipogenic, osteogenic and hepatic differentiation potential. Hepatocyte-like cells derived from GFP+ hPMSCs showed typical hepatic phenotypes. Conclusions: GFP gene transduction has no adverse influences on the cellular or biochemical properties of hPMSCs or markers. GFP gene transduction using lentiviral vectors is a reliable labeling and tracking method. GFP+ hPMSCs can therefore serve as a tool to investigate the mechanisms of MSC-based therapy, including hepatic disease therapy
    corecore