31 research outputs found

    Gut microbiota and acylcarnitine metabolites connect the beneficial association between estrogen and lipid metabolism disorders in ovariectomized mice

    Full text link
    Decreased estrogen level is one of the main causes of lipid metabolism disorders and coronary heart disease in women after menopause. Exogenous estradiol benzoate is effective to some extent in alleviating lipid metabolism disorders caused by estrogen deficiency. However, the role of gut microbes in the regulation process is not yet appreciated. The objective of this study was to investigate the effects of estradiol benzoate supplementation on lipid metabolism, gut microbiota, and metabolites in ovariectomized (OVX) mice and to reveal the importance of gut microbes and metabolites in the regulation of lipid metabolism disorders. This study found that high doses of estradiol benzoate supplementation effectively attenuated fat accumulation in OVX mice. There was a significant increase in the expression of genes enriched in hepatic cholesterol metabolism and a concomitant decrease in the expression of genes enriched in unsaturated fatty acid metabolism pathways. Further screening of the gut for characteristic metabolites associated with improved lipid metabolism revealed that estradiol benzoate supplementation influenced major subsets of acylcarnitine metabolites. Ovariectomy significantly increased the abundance of characteristic microbes that are significantly negatively associated with acylcarnitine synthesis, such as Lactobacillus and Eubacterium ruminantium group bacteria, while estradiol benzoate supplementation significantly increased the abundance of characteristic microbes that are significantly positively associated with acylcarnitine synthesis, such as Ileibacterium and Bifidobacterium spp. The use of pseudosterile mice with gut microbial deficiency greatly facilitated the synthesis of acylcarnitine due to estradiol benzoate supplementation and also alleviated lipid metabolism disorders to a greater extent in OVX mice. IMPORTANCE Our findings establish a role for gut microbes in the progression of estrogen deficiency-induced lipid metabolism disorders and reveal key target bacteria that may have the potential to regulate acylcarnitine synthesis. These findings suggest a possible route for the use of microbes or acylcarnitine to regulate disorders of lipid metabolism induced by estrogen deficiency

    Estradiol Regulates the Expression and Secretion of Antimicrobial Peptide S100A7 via the ERK1/2-Signaling Pathway in Goat Mammary Epithelial Cells

    No full text
    S100A7 has received extensive attention in the prevention and treatment of mastitis across a broad spectrum, yet there is a little information about its mechanism, especially in the immunomodulatory effects of estrogen. In the present study, based on the milk bacteriological culture (BC) of 30 dairy goats, the concentration of both estrogen and S100A7 in the BC-positive samples was not significantly different than in the BC-negative samples; the estrogen abundance in subclinical and clinical mastitis samples also showed only a limited difference; compared with healthy samples, the S100A7 abundance in subclinical mastitis samples differed little, while it was significantly decreased in clinical mastitis samples. Moreover, the relationship between estrogen and S100A7 was positive, and the regression equation was y = 0.3206x + 23.459. The goat mammary epithelial cells (gMECs) were isolated and treated with 1, 10, 100 nM E2 and/or 5 μg/mL lipopolysaccharide (LPS), respectively, for 6 h. Compared with control samples, 5 μg/mL LPS, 10 nM E2 and 100 nM E2 markedly induced S100A7 expression and secretion. More than separated treatment, the cooperation of LPS and E2 also significantly increased S100A7 expression, rather than S100A7 secretion. The p-ERK was up-regulated markedly with 100 nM E2 treatment, while the expression of p-JNK, p-p38 and p-Akt had little effect. The G protein-coupled estrogen receptor 1(GPER1) agonist G1 markedly induced S100A7 expression and secretion in gMECs, and the estrogen nuclear receptor antagonist ICI and GPER1 antagonist G15 significantly repressed this process. In conclusion, E2 binds to nuclear and membrane receptors to regulate the expression and secretion of S100A7 via the ERK1/2-signaling pathway in gMECs

    One-Step Synthesis of Highly Efficient Oligo(phenylphosphonic Dihydroxypropyl Silicone Oil) Flame Retardant for Polycarbonate

    No full text
    A highly efficient flame retardant and smoke suppression oligomer, oligo(phenylphosphonic dihydroxypropyl silicone oil) (PPSO), was synthesized by a one-step reaction. The chemical structure of PPSO was confirmed by Fourier transform infrared (FTIR), 31P nuclear magnetic resonance (31P NMR), and 29Si nuclear magnetic resonance (29Si NMR). The flame-retardant effect of PPSO on the polycarbonate (PC) matrix was investigated by limiting oxygen index, UL-94 vertical burning test, and cone calorimetry, respectively. The results showed that PC/PPSO composites passed UL-94 V-0 rate testing with only 1.3 wt. % PPSO. Furthermore, the incorporation of PPSO can suppress the release of smoke. The flame-retardant mechanism was also investigated via thermogravimetric analysis-fourier transform infrared spectroscopy (TG-FTIR), field-emission scanning electronic microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. From the result of pyrolysis gas and char residue, PPSO played a synergistic flame-retardant mechanism including the gas phase and the condensed phase

    Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River

    Get PDF
    Strategic studies of gravel deposits, in particular using heavy-mineral analyses, have thrown light on the important unresolved question as to the timing of the initiation of the Yellow River drainage through the Sanmen Gorge, which linked the headwaters of that system in the Fenwei Basin and further upstream with the North China Plain and the Pacific Ocean in the east. Survey of the Sanmen Gorge reach revealed previously unrecognized gravel levels: a higher fifth terrace (T5) and a gravel that formed on a high-level planation surface that is preserved on the flanks of the gorge, below the Xiaoshan upland. This high-level gravel differs markedly from the Yellow River terraces, with a lack of material from the upstream catchment, and would appear to represent a small fluvial catchment that developed in the area during the formation of the planation surface, before the Sanmen Gorge was excavated. Comparison was also made with basin-fill gravels from the endorheic fluvio-lacustrine system that existed immediately upstream of the gorge, and was captured by the Yellow River when the latter was cut, and with the modern bedload gravel of the Yellow River in this reach. The former contains significant quantities of unstable hornblende, which implies more local derivation for the endorheic system, whereas the modern bedload resembles the terrace gravels in showing compositional maturity and long-distance transport from upstream within the catchment. The work reinforces a minimum age of 1.2 Ma for the formation of the Sanmen Gorge

    Sulforaphane Suppresses H<sub>2</sub>O<sub>2</sub>-Induced Oxidative Stress and Apoptosis via the Activation of AMPK/NFE2L2 Signaling Pathway in Goat Mammary Epithelial Cells

    No full text
    Oxidative stress in high-yielding dairy goats adversely affects lactation length, milk quality, and the economics of dairy products. During the lactation period, goat mammary epithelial cells (GMECs) are often in a state of disordered metabolic homeostasis primarily caused by the overproduction of reactive oxygen species (ROS). Sulforaphane (SFN), an electrophilic compound that is enriched in broccoli, is a promising antioxidant agent for future potential clinical applications. The objective of the present study was to investigate the function of SFN on hydrogen peroxide (H2O2)-induced oxidative damage in primary GMECs and the underlying molecular mechanisms. Isolated GMECs in triplicate were pretreated with SFN (1.25, 2.5, and 5 μM) for 24 h in the absence or presence of H2O2 (400 μM) for 24 h. The results showed that SFN effectively enhanced superoxide dismutase (SOD) activity, elevated the ratio of glutathione (GSH)/glutathione oxidized (GSSG), and reduced H2O2-induced ROS and malondialdehyde (MDA) production and cell apoptosis. Mechanically, SFN-induced nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) translocation to the nucleus through the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway coupled with inhibition of the caspase apoptotic pathway. In addition, GMECs were transfected with NFE2L2 small interfering RNA (NFE2L2 siRNA) for 48 h and/or treated with SFN (5 μM) for 24 h before being exposed to H2O2 (400 μM) for 24 h. We found that knockdown of NFE2L2 by siRNA abrogated the preventive effect of SFN on H2O2-induced ROS overproduction and apoptosis. Taken together, sulforaphane suppressed H2O2-induced oxidative stress and apoptosis via the activation of the AMPK/NFE2L2 signaling pathway in primary GMECs

    The Relationship between Mastitis and Antimicrobial Peptide S100A7 Expression in Dairy Goats

    No full text
    S100A7 is an inflammation-related protein and plays an essential role in host defenses, yet there is little research about the relationship between mastitis and S100A7 expression in dairy goats. Here, according to the clinical diagnosis of udders, SCC, and bacteriological culture (BC) of milk, 84 dairy goats were grouped into healthy goats (n = 25), subclinical mastitis goats (n = 36), and clinical mastitis goats (n = 23). The S100A7 concentration in subclinical mastitis goats was significantly upregulated than in healthy dairy goats (p = 0.0056) and had a limited change with clinical mastitis dairy goats (p = 0.8222). The relationship between log10 SCC and S100A7 concentration in milk was positive and R = 0.05249; the regression equation was Y = 0.1446 × X + 12.54. According to the three groups, the log10 SCC and S100A7 were analyzed using the receiver operating characteristics (ROC) curve; in subclinical mastitis goats, the area under the ROC curve (AUC) of log10 SCC was 0.9222 and p p = 0.0022, respectively; in clinical mastitis goats, the AUC of log10 SCC was 0.9678 and p p = 0.5634, respectively. In healthy goats, S100A7 was expressed weakly in the alveolus of the mammary gland of healthy goats while expressed densely in the collapsed alveolus of mastitis goats. Moreover, S100A7 expression increased significantly in mastitis goats than in healthy dairy goats. In this research, results showed the effects of mastitis on the S100A7 expression in the mammary gland and S100A7 concentration in milk and the limited relationship between SCC and mastitis, which provided a new insight into S100A7’s role in the host defenses of dairy goats
    corecore