37,673 research outputs found

    The effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors

    Full text link
    The strain in AlGaN/GaN heterojunction field-effect transistors (HFETs) is examined theoretically in the context of the fully-coupled equation of state for piezoelectric materials. Using a simple analytical model, it is shown that, in the absence of a two-dimensional electron gas (2DEG), the out-of-plane strain obtained without electromechanical coupling is in error by about 30% for an Al fraction of 0.3. This result has consequences for the calculation of quantities that depend directly on the strain tensor. These quantities include the eigenstates and electrostatic potential in AlGaN/GaN heterostructures. It is shown that for an HFET, the electromechanical coupling is screened by the 2DEG. Results for the electromechanical model, including the 2DEG, indicate that the standard (decoupled) strain model is a reasonable approximation for HFET calculataions. The analytical results are supported by a self-consistent Schr\"odinger-Poisson calculation that includes the fully-coupled equation of state together with the charge-balance equation.Comment: 6 figures, revte

    Density Variations over Subparsec Scales in Diffuse Molecular Gas

    Get PDF
    We present high-resolution observations of interstellar CN, CH, CH^{+}, \ion{Ca}{1}, and \ion{Ca}{2} absorption lines toward the multiple star systems HD206267 and HD217035. Substantial variations in CN absorption are observed among three sight lines of HD206267, which are separated by distances of order 10,000 AU; smaller differences are seen for CH, CH^{+}, and \ion{Ca}{1}. Gas densities for individual velocity components are inferred from a chemical model, independent of assumptions about cloud shape. While the component densities can differ by factors of 5.0 between adjacent sightlines, the densities are always less than 5000 cm^{-3}. Calculations show that the derived density contrasts are not sensitive to the temperature or reaction rates used in the chemical model. A large difference in the CH^{+} profiles (a factor of 2 in column density) is seen in the lower density gas toward HD217035.Comment: 9 pages, 2 figures. Accepted for publication in ApJ

    Reactively sputtered RuO2 diffusion barriers

    Get PDF
    The thermal stability of reactively sputtered RuO2 films is investigated from the point of view of their application as diffusion barriers in silicon contact metallizations with an Al overlayer. Backscattering spectra of Si/RuO2/Al samples and electrical measurements on shallow junction diodes with Si/TiSi2.3/RuO2/Al contacts both show that RuO2 films are effective diffusion barriers between Al and Si for 30-min annealing at temperatures as high as 600°C

    Electrical characteristics of amorphous iron-tungsten contacts on silicon

    Get PDF
    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities, pc=1×10^−7 and pc=2.8×10^−6, were measured on n+ and p+ silicon, respectively. These values remain constant after thermal treatment up to at least 500°C. A barrier height, φBn=0.61 V, was measured on n-type silicon

    Josephson Effect in Pb/I/NbSe2 Scanning Tunneling Microscope Junctions

    Full text link
    We have developed a method for the reproducible fabrication of superconducting scanning tunneling microscope (STM) tips. We use these tips to form superconductor/insulator/superconductor tunnel junctions with the STM tip as one of the electrodes. We show that such junctions exhibit fluctuation dominated Josephson effects, and describe how the Josephson product IcRn can be inferred from the junctions' tunneling characteristics in this regime. This is first demonstrated for tunneling into Pb films, and then applied in studies of single crystals of NbSe2. We find that in NbSe2, IcRn is lower than expected, which could be attributed to the interplay between superconductivity and the coexisting charge density wave in this material.Comment: 3 pages, 2 figures. Presented at the New3SC-4 meeting, San Diego, Jan. 16-21 200

    The induced representations of Brauer algebra and the Clebsch-Gordan coefficients of SO(n)

    Get PDF
    Induced representations of Brauer algebra Df(n)D_{f}(n) from Sf1×Sf2S_{f_{1}}\times S_{f_{2}} with f1+f2=ff_{1}+f_{2}=f are discussed. The induction coefficients (IDCs) or the outer-product reduction coefficients (ORCs) of Sf1×Sf2↑Df(n)S_{f_{1}}\times S_{f_{2}}\uparrow D_{f}(n) with f≤4f\leq 4 up to a normalization factor are derived by using the linear equation method. Weyl tableaus for the corresponding Gel'fand basis of SO(n) are defined. The assimilation method for obtaining CG coefficients of SO(n) in the Gel'fand basis for no modification rule involved couplings from IDCs of Brauer algebra are proposed. Some isoscalar factors of SO(n)⊃SO(n−1)SO(n)\supset SO(n-1) for the resulting irrep [λ1, λ2, λ3, λ4,0˙][\lambda_{1},~\lambda_{2},~ \lambda_{3},~\lambda_{4},\dot{0}] with $\sum\limits_{i=1}^{4}\lambda_{i}\leq .Comment: 48 pages latex, submitted to Journal of Phys.

    WxN1–x alloys as diffusion barriers between Al and Si

    Get PDF
    Reactively sputtered tungsten nitride (WxN1–x) layers are investigated as diffusion barriers between Al overlayers and Si shallow n + -p junctions. Both amorphous W80 N20 and polycrystalline W60 N40 films were found to be very effective in preserving the integrity of the n + -p diodes for 30-min vacuum annealing up to 575 °C. Diode failure at higher temperatures is caused by localized penetration of Al into through the WxN1–x barriers. The effectiveness of the barrier decreases for polycrystalline W90 N10 and is worse for pure W

    Inferring effective interactions from the local density of states: application to STM data from Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    While the influence of impurities on the local density of states (LDOS) in a metal is notoriously non-local due to interference effects, low order moments of the LDOS in general can be shown to depend only on the local structure of the Hamiltonian. Specifically, we show that an analysis of the spatial variations of these moments permits one to ``work backwards'' from scanning tunneling microscopy (STM) data to infer the local structure of the underlying effective Hamiltonian. Applying this analysis to STM data from the high temperature superconductor, Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, we find that the variations of the electro-chemical potential are remarkably small (i.e., the disorder is, in a sense, weak) but that there are large variations in the local magnitude of the d-wave gap parameter.Comment: 7 pages, 7 figure

    Properties of superconducting MgB_2 wires: "in-situ" versus "ex-situ" reaction technique

    Full text link
    We have fabricated a series of iron-sheathed superconducting wires prepared by the powder-in-tube technique from (MgB_2)_{1-x}:(Mg+2B)_x initial powder mixtures taken with different proportions, so that x varies from 0 to 1. It turned out that "ex-situ" prepared wire (x = 0) has considerable disadvantages compared to all the other wires in which "in-situ" assisted (0 < x < 1) or pure "in-situ" (x = 1) preparation was used due to weaker inter-grain connectivity. As a result, higher critical current densities J_c were measured over the entire range of applied magnetic fields B_a for all the samples with x > 0. Pinning of vortices in MgB_2 wires is shown to be due to grain boundaries. J_c(B_a) behavior is governed by an interplay between the transparency of grain boundaries and the amount of "pinning" grain boundaries. Differences between thermo-magnetic flux-jump instabilities in the samples and a possible threat to practical applications are also discussed.Comment: To be published in Supercond. Sci. Technol. (2003), in pres
    • …
    corecore