200 research outputs found

    Molecular simulation of adsorption behaviors of methane and carbon dioxide on typical clay minerals

    Get PDF
    Knowledge of the interaction mechanisms between shale and CH4/CO2 is crucial for the implementation of CO2 sequestration with enhanced CH4 recovery (CS-EGR) in shale reservoir. As one of the main constituents of shale, clay minerals can profoundly affect the storage capacity of gases in nanopores. In this paper, the adsorption behaviors of both CO2 and CH4 on montmorillonite, illite as well as kaolinite under dry condition are investigated by Grand Canonical Monte Carlo (GCMC) simulation. The results exhibit that the maximum adsorption capacity of single-component CH4 and CO2 is associated with the types of clay crystals. Specifically, the montmorillonite has the strongest adsorption capacity for CO2, followed by illite and kaolinite, while the sequence in maximum adsorption capacity of CH4 is predicted in the order of kaolinite > montmorillonite > illite. These discrepancies are closely related to the characteristics of adsorbate molecules as well as the different structures of clay crystals. Meanwhile, the maximum adsorption capacity of CH4 in studied clay minerals gradually decreases as pore size increases, while nanopores with 2-nm basal spacing demonstrate the highest adsorption capacity for CO2. In addition, it is observed that the studied clay minerals tend to preferentially adsorb CO2 rather than CH4 during binary gas mixtures simulation. The selectivity of CH4/CO2 mixtures in montmorillonite and kaolinite exhibits various performances as the adsorption pressure increases, with the selectivity in montmorillonite being the largest, especially at low pressure. The cation exchange significantly enhances the electrostatic interaction with CO2 molecules, leading to a higher loading of CO2 as well as larger value of selectivity. These findings can provide basis and guidance for the CS-EGR project in shale reservoirs

    Substantial Progress Yet Significant Opportunity for Improvement in Stroke Care in China

    Get PDF
    BACKGROUND AND PURPOSE: Stroke is a leading cause of death in China. Yet the adherence to guideline-recommended ischemic stroke performance metrics in the past decade has been previously shown to be suboptimal. Since then, several nationwide stroke quality management initiatives have been conducted in China. We sought to determine whether adherence had improved since then. METHODS: Data were obtained from the 2 phases of China National Stroke Registries, which included 131 hospitals (12 173 patients with acute ischemic stroke) in China National Stroke Registries phase 1 from 2007 to 2008 versus 219 hospitals (19 604 patients) in China National Stroke Registries phase 2 from 2012 to 2013. Multiple regression models were developed to evaluate the difference in adherence to performance measure between the 2 study periods. RESULTS: The overall quality of care has improved over time, as reflected by the higher composite score of 0.76 in 2012 to 2013 versus 0.63 in 2007 to 2008. Nine of 13 individual performance metrics improved. However, there were no significant improvements in the rates of intravenous thrombolytic therapy and anticoagulation for atrial fibrillation. After multivariate analysis, there remained a significant 1.17-fold (95% confidence interval, 1.14-1.21) increase in the odds of delivering evidence-based performance metrics in the more recent time periods versus older data. The performance metrics with the most significantly increased odds included stroke education, dysphagia screening, smoking cessation, and antithrombotics at discharge. CONCLUSIONS: Adherence to stroke performance metrics has increased over time, but significant opportunities remain for further improvement. Continuous stroke quality improvement program should be developed as a national priority in China

    Enhanced polarization and abnormal flexural deformation in bent freestanding perovskite oxides

    Get PDF
    Recent realizations of ultrathin freestanding perovskite oxides offer a unique platform to probe novel properties in two-dimensional oxides. Here, we observe a giant flexoelectric response in freestanding BiFeO3 and SrTiO3 in their bent state arising from strain gradients up to 3.5 × 107 m−1, suggesting a promising approach for realizing ultra-large polarizations. Additionally, a substantial change in membrane thickness is discovered in bent freestanding BiFeO3, which implies an unusual bending-expansion/shrinkage effect in the ferroelectric membrane that has never been seen before in crystalline materials. Our theoretical model reveals that this unprecedented flexural deformation within the membrane is attributable to a flexoelectricity–piezoelectricity interplay. The finding unveils intriguing nanoscale electromechanical properties and provides guidance for their practical applications in flexible nanoelectromechanical systems
    corecore