63 research outputs found

    Comparing Papanicolau smear, visual inspection with acetic acid and human papillomavirus cervical cancer screening methods among HIV-positive women by immune status and antiretroviral therapy

    Get PDF
    Background: A rigorous comparison of cervical cancer screening methods utilizing data on immune status, antiretroviral therapy (ART) and colposcopy-directed biopsy has not been performed among HIV-positive women. Methods: Between June and November 2009, 500 HIV-positive women were enrolled at an HIV treatment clinic in Nairobi, Kenya, and underwent Papanicolau (Pap) smear, visual inspection with acetic acid (VIA), human papillomavirus (HPV) and colposcopydirected biopsy (gold standard). Positive Pap smear (ASCUS, LSIL, HSIL), VIA, HPV and their combinations were compared with CIN2/3+. Sensitivity, specificity and AUC (sensitivity and 1-specificity) were compared using pairwise tests and multivariate logistic regression models that included age, CD4+ cell count and ART duration. Results:Of 500 enrolled, 498 samples were collected. On histology, there were 172 (35%) normal, 186 (37%) CIN1, 66 (13%) CIN2, 47 (9%) CIN3 and 27 (5%) indeterminate. Pap (ASCUS+) was the most sensitive screening method (92.7%), combination of both Pap (HSIL+) and VIA positive was the most specific (99.1%) and Pap (HSIL+) had the highest AUC (0.85). In multivariate analyses, CD4+ cell count of 350 cells/ml or less was associated with decreased HPV specificity (P=0.002); ART duration of less than 2 years was associated with decreased HPV (P=0.01) and VIA (P=0.03) specificity; and age less than 40 years was associated with increased VIA sensitivity (P Conclusion: Pap smear is a robust test among HIV-positive women regardless of immune status or ART duration. Results should be cautiously interpreted when using HPV among those younger, immunosuppressed or on ART less than 2 years, and when using VIA among those aged 40 years or more

    Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Full text link
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    • …
    corecore