23 research outputs found

    Expanded Insights Into Mechanisms of Gene Expression and Disease Related Disruptions

    Get PDF
    Definitive molecular diagnoses in disorders apparently due to genetic or genomic defects are still lacking in a significant number of investigated cases, despite use of studies designed to discover defects in the protein coding regions of the genome. Increasingly studies are being designed to search for defects in the non-protein coding genome, and for alterations in gene expression. Here we review new insights into genomic elements involved in control of gene expression, including methods to analyze chromatin that is accessible for transcription factor binding, enhancers, chromatin looping, transcription, RNA binding proteins, and alternative splicing. We review new studies on levels of genome organization, including the occurrence of transcriptional domains and their boundary elements. Information is presented on specific malformation syndromes that arise due to structural genomic changes that impact the non-protein coding genome and sometimes impact specific transcriptional domains. We also review convergence of genome-wide association with studies of gene expression, discoveries related to expression quantitative trait loci and splicing quantitative trait loci and the relevance of these to specific complex common diseases. Aspects of epigenetic mechanisms and clinical applications of analyses of methylation signatures are also discussed

    A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide receptors NPY1R, NPY5R

    Get PDF
    BACKGROUND: Autism is a pervasive developmental disorder characterized by a triad of deficits: qualitative impairments in social interactions, communication deficits, and repetitive and stereotyped patterns of behavior. Although autism is etiologically heterogeneous, family and twin studies have established a definite genetic basis. The inheritance of idiopathic autism is presumed to be complex, with many genes involved; environmental factors are also possibly contributory. The analysis of chromosome abnormalities associated with autism contributes greatly to the identification of autism candidate genes. CASE PRESENTATION: We describe a child with autistic disorder and an interstitial deletion on chromosome 4q. This child first presented at 12 months of age with developmental delay and minor dysmorphic features. At 4 years of age a diagnosis of Pervasive Developmental Disorder was made. At 11 years of age he met diagnostic criteria for autism. Cytogenetic studies revealed a chromosome 4q deletion. The karyotype was 46, XY del 4 (q31.3-q33). Here we report the clinical phenotype of the child and the molecular characterization of the deletion using molecular cytogenetic techniques and analysis of polymorphic markers. These studies revealed a 19 megabase deletion spanning 4q32 to 4q34. Analysis of existing polymorphic markers and new markers developed in this study revealed that the deletion arose on a paternally derived chromosome. To date 33 genes of known or inferred function are deleted as a consequence of the deletion. Among these are the AMPA 2 gene that encodes the glutamate receptor GluR2 sub-unit, GLRA3 and GLRB genes that encode glycine receptor subunits and neuropeptide Y receptor genes NPY1R and NPY5R. CONCLUSIONS: The deletion in this autistic subject serves to highlight specific autism candidate genes. He is hemizygous for AMPA 2, GLRA3, GLRB, NPY1R and NPY5R. GluR2 is the major determinant of AMPA receptor structure. Glutamate receptors maintain structural and functional plasticity of synapses. Neuropeptide Y and its receptors NPY1R and NPY5R play a role in hippocampal learning and memory. Glycine receptors are expressed in very early cortical development. Molecular cytogenetic studies and DNA sequence analysis in other patients with autism will be necessary to confirm that these genes are involved in autism

    Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: an MRI investigation

    Get PDF
    Purpose: determine if language disorder in children with autistic disorder (AD) corresponds to abnormalities in hemispheric asymmetries in auditory language cortex. Methods: MRI morphometric study in children with AD (n = 50) to assess hemispheric asymmetries in auditory language cortex. A key region of interest was the planum temporale (PT), which is larger in the left hemisphere in most healthy individuals. Results: (i) Heschl’s gyrus and planum polare showed typical hemisphere asymmetry patterns; (ii) posterior Superior Temporal Gyrus (pSTG) showed significant rightward asymmetry; and (iii) PT showed a trend for rightward asymmetry that was significant when constrained to right-handed boys (n = 30). For right-handed boys, symmetry indices for pSTG were significantly positively correlated with those for PT. PT asymmetry was age dependent, with greater rightward asymmetry with age. Conclusions: results provide evidence for rightward asymmetry in auditory association areas (pSTG and PT) known to subserve language processing. Cumulatively, our data provide evidence for a differing maturational path for PT for lower functioning children with AD, with both pre- and post-natal experience likely playing a role in PT asymmetry

    Book Review

    No full text

    Susceptibility to Anthrax Lethal Toxin-Induced Rat Death Is Controlled by a Single Chromosome 10 Locus That Includes rNlrp1

    Get PDF
    Anthrax lethal toxin (LT) is a bipartite protease-containing toxin and a key virulence determinant of Bacillus anthracis. In mice, LT causes the rapid lysis of macrophages isolated from certain inbred strains, but the correlation between murine macrophage sensitivity and mouse strain susceptibility to toxin challenge is poor. In rats, LT induces a rapid death in as little as 37 minutes through unknown mechanisms. We used a recombinant inbred (RI) rat panel of 19 strains generated from LTsensitive and LT-resistant progenitors to map LT sensitivity in rats to a locus on chromosome 10 that includes the inflammasome NOD-like receptor (NLR) sensor, Nlrp1. This gene is the closest rat homolog of mouse Nlrp1b, which was previously shown to control murine macrophage sensitivity to LT. An absolute correlation between in vitro macrophage sensitivity to LT-induced lysis and animal susceptibility to the toxin was found for the 19 RI strains and 12 additional rat strains. Sequencing Nlrp1 from these strains identified five polymorphic alleles. Polymorphisms within the N-terminal 100 amino acids of the Nlrp1 protein were perfectly correlated with LT sensitivity. These data suggest that toxin-mediated lethality in rats as well as macrophage sensitivity in this animal model are controlled by a single locus on chromosome 10 that is likely to be the inflammasome NLR sensor, Nlrp1

    Influence of molecular classes and growth hormone treatment on growth and dysmorphology in Prader‐Willi

    No full text
    Prader-Willi syndrome (PWS) is a complex genetic disorder with three molecular classes but clinical ascertainment is based on distinctive features. The prevalence of dysmorphic features was studied in 355 PWS participants (61% deletion, 36% maternal disomy [UPD], and 3% imprinting defects) from the National Institute of Health PWS Rare Diseases Clinical Research Network. The effect of growth hormone (GH) treatment on growth and dysmorphic features was compared. Among participants, upslanting palpebral fissures were seen in 23%; strabismus in 42%; abnormal dentition in 32%; small hands in 63% and small feet in 70%; hypopigmentation in 30%; striae in 32% and skin picking in 26%. Compared to those with UPD, participants with deletions were found to be heavier (p = 0.002), had smaller head circumference (HC) (p = 0.009), higher incidence of a flat occiput (p = 0.005); low-anterior hairline (p = 0.04); abnormal dentition (p = 0.009); abdominal striae (p = 0.045), nail abnormalities (p = 0.050), and fair-haired (p < 0.001). Participants in both genetic groups receiving GH were taller (p = 0.005), had larger HCs (p = 0.005), and longer hands (p = 0.049). This study suggested that PWS genetic subtypes and GH treatment can influence growth and dysmorphic features that may impact clinical diagnosis of PWS, such as stature, head shape and appearance of the eyes, nose, and genitalia

    Influence of molecular classes and growth hormone treatment on growth and dysmorphology in Prader-Willi syndrome: A multicenter study.

    No full text
    Prader-Willi syndrome (PWS) is a complex genetic disorder with three molecular classes but clinical ascertainment is based on distinctive features. The prevalence of dysmorphic features was studied in 355 PWS participants (61% deletion, 36% maternal disomy [UPD], and 3% imprinting defects) from the National Institute of Health PWS Rare Diseases Clinical Research Network. The effect of growth hormone (GH) treatment on growth and dysmorphic features was compared. Among participants, upslanting palpebral fissures were seen in 23%; strabismus in 42%; abnormal dentition in 32%; small hands in 63% and small feet in 70%; hypopigmentation in 30%; striae in 32% and skin picking in 26%. Compared to those with UPD, participants with deletions were found to be heavier (p = 0.002), had smaller head circumference (HC) (p = 0.009), higher incidence of a flat occiput (p = 0.005); low-anterior hairline (p = 0.04); abnormal dentition (p = 0.009); abdominal striae (p = 0.045), nail abnormalities (p = 0.050), and fair-haired (p < 0.001). Participants in both genetic groups receiving GH were taller (p = 0.005), had larger HCs (p = 0.005), and longer hands (p = 0.049). This study suggested that PWS genetic subtypes and GH treatment can influence growth and dysmorphic features that may impact clinical diagnosis of PWS, such as stature, head shape and appearance of the eyes, nose, and genitalia
    corecore