24 research outputs found

    Photosynthetic Genes of Petunia

    Full text link

    Bacterial Chitinase Is Modified and Secreted in Transgenic Tobacco

    Full text link

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    The petunia chlorophyll a/b

    No full text

    Bacterial Chitinase Is Modified and Secreted in Transgenic Tobacco

    No full text
    The chiA gene of Serratia marcescens codes for a secreted protein, bacterial chitinase (ChiA). We have investigated the modifications and the cellular location of ChiA when it is expressed in transgenic tobacco plants. Immunoblots on total leaf protein probed with antibody to ChiA showed that when the bacterial chitinase is expressed in plants, it migrates as a series of discrete bands with either the same or a slower mobility than the secreted bacterial protein. Analysis of the vacuum infiltrate of leaves expressing ChiA showed that the modified forms of the protein are enriched in the intercellular fluid. Media recovered from suspension cultures of cell lines expressing the chiA gene were also enriched for the modified forms of ChiA. Washed protoplasts, however, contained only the nonmodified form. The molecular weight of these polypeptides is reduced by treatment with glycopeptidase F but not with endoglycosidase H. Treatment of the suspension cultures with tunicamycin also leads to reduction in the molecular weight of the chitinase bands. We suggest that some of the ChiA protein is N-glycosylated and secreted when expressed in plants, and that the modifications are complex glycans. These results show that a bacterial signal sequence can function in plant cells, and that protein secretion from plant cells probably operates by a default pathway
    corecore