37 research outputs found

    Biochemical Properties of Human D-amino Acid Oxidase Variants and Their Potential Significance in Pathologies

    No full text
    The stereoselective flavoenzyme D-amino acid oxidase (DAAO) catalyzes the oxidative deamination of neutral and polar D-amino acids producing the corresponding α-keto acids, ammonia, and hydrogen peroxide. Despite its peculiar and atypical substrates, DAAO is widespread expressed in most eukaryotic organisms. In mammals (and humans in particular), DAAO is involved in relevant physiological processes ranging from D-amino acid detoxification in kidney to neurotransmission in the central nervous system, where DAAO is responsible of the catabolism of D-serine, a key endogenous co-agonist of N-methyl-D-aspartate receptors. Recently, structural and functional studies have brought to the fore the distinctive biochemical properties of human DAAO (hDAAO). It appears to have evolved to allow a strict regulation of its activity, so that the enzyme can finely control the concentration of substrates (such as D-serine in the brain) without yielding to an excessive production of hydrogen peroxide, a potentially toxic reactive oxygen species (ROS). Indeed, dysregulation in D-serine metabolism, likely resulting from altered levels of hDAAO expression and activity, has been implicated in several pathologies, ranging from renal disease to neurological, neurodegenerative, and psychiatric disorders. Only one mutation in DAO gene was unequivocally associated to a human disease. However, several single nucleotide polymorphisms (SNPs) are reported in the database and the biochemical characterization of the corresponding recombinant hDAAO variants is of great interest for investigating the effect of mutations. Here we reviewed recently published data focusing on the modifications of the structural and functional properties induced by amino acid substitutions encoded by confirmed SNPs and on their effect on D-serine cellular levels. The potential significance of the different hDAAO variants in human pathologies will be also discussed

    Specificity of induction of glycopeptide antibiotic resistance in the producing actinomycetes

    No full text
    Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by Gram-positive pathogens. It is widely believed that glycopeptide-resistance determinants (van genes) are ultimately derived from the producing actinomycetes. We hereby investigated the relationship between the antimicrobial activity of vancomycin and teicoplanins and their differential ability to induce van gene expression in Actinoplanes teichomyceticus\u2014the producer of teicoplanin\u2014and Nonomuraea gerenzanensis\u2014the producer of the teicoplanin-like A40926. As a control, we used the well-characterized resistance model Streptomyces coelicolor. The enzyme activities of a cytoplasmic-soluble D,D-dipeptidase and of a membrane-associated D,D-carboxypeptidase (corresponding to VanX and VanY respectively) involved in resistant cell wall remodeling were measured in the actinomycetes grown in the presence or absence of subinhibitory concentrations of vancomycin, teicoplanin, and A40926. Results indicated that actinomycetes possess diverse self-resistance mechanisms, and that each of them responds differently to glycopeptide induction. Gene swapping among teicoplanins-producing actinomycetes indicated that cross-talking is possible and provides useful information for predicting the evolution of future resistance gene combinations emerging in pathogens

    Immediate early gene kakusei potentially plays a role in the daily foraging of honey bees.

    No full text
    kakusei is a non-coding RNA that is overexpressed in foraging bee brain. This study describes a possible role of the IEG kakusei during the daily foraging of honey bees. kakusei was found to be transiently upregulated within two hours during rewarded foraging. Interestingly, during unrewarded foraging the gene was also found to be up-regulated, but immediately lowered when food was not rewarded. Moreover, the kakusei overexpression was diminished within a very short time when the time schedule of feeding was changed. This indicates the potential role of kakusei on the motivation of learned reward foraging. These results provide evidence for a dynamic role of kakusei during for aging of bees, and eventually its possible involvement in learning and memory. Thus the kakusei gene could be used as search tool in finding distinct molecular pathways that mediate diverse behavioral components of foraging
    corecore