45 research outputs found

    In vitro production of synthetic viral RNAs and their delivery into mammalian cells and the application of viral RNAs in the study of innate interferon responses

    Get PDF
    Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5-mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.Peer reviewe

    Inactivation efficacy of H5N1 avian influenza virus by commonly used sample preparation reagents for safe laboratory practices

    Get PDF
    The objective of this study was to determine the inactivation efficiency of common sample preparation reagents against highly pathogenic avian influenza A (HPAI) H5N1 virus. HPAI H5N1 virus has caused infections in humans with a mortality rate of over 50%. Due to the high mortality and the risk of aerosol transmission of that virus to humans and birds, infectious HPAI H5N1 viruses are contained in a biosafety level 3 laboratory. However, many procedures for further molecular analyses would be easier in lower biosafety conditions. To ensure the laboratory safety the successful inactivation procedures should be demonstrated before the samples are transferred to a lower containment facility. We tested the inactivation capacity of commonly used cell lysis buffer radio-immuno precipitation assay (RIPA) buffer for protein samples, cell fixatives methanol (MeOH) and paraformaldehyde (PFA) and guanidine isothiocyanate-containing lysis buffer for RNA isolation (RLT, Qiagen) in H5N1-infected cells. Based on our results RLT buffer, 90% MeOH (20 min, −20 °C) and 4% PFA (30 min, RT) all completely inactivated the HPAI H5N1 virus. However, RIPA buffer alone was not sufficient to inactivate the HPAI H5N1 virus in infected cell samples but, instead, combining RIPA lysis buffer and boiling for 10 min the samples in Laemmli buffer led to complete inactivation of the virus.</p

    SARS-CoV-2 variants Alpha, Beta, Delta and Omicron show a slower host cell interferon response compared to an early pandemic variant

    Get PDF
    Since the start of the pandemic at the end of 2019, arising mutations in SARS-CoV-2 have improved its transmission and ability to circumvent the immunity induced by vaccination and previous COVID-19 infection. Studies on the effects of SARS-CoV-2 genomic mutations on replication and innate immunity will give us valuable insight into the evolution of the virus which can aid in further development of vaccines and new treatment modalities. Here we systematically analyzed the kinetics of virus replication, innate immune activation, and host cell antiviral response patterns in Alpha, Beta, Delta, Kappa, Omicron and two early pandemic SARS-CoV-2 variant-infected human lung epithelial Calu-3 cells. We observed overall comparable replication patterns for these variants with modest variations. Particularly, the sublineages of Omicron BA.1, BA.2 and a recombinant sublineage, XJ, all showed attenuated replication in Calu-3 cells compared to Alpha and Delta. Furthermore, there was relatively weak activation of primary innate immune signaling pathways, however, all variants produced enough interferons to induce the activation of STAT2 and production of interferon stimulated genes (ISGs). While interferon mRNA expression and STAT2 activation correlated with cellular viral RNA levels, ISG production did not. Although clear cut effects of specific SARS-CoV-2 genomic mutations could not be concluded, the variants of concern, including Omicron, showed a lower replication efficiency and a slower interferon response compared to an early pandemic variant in the study

    Zika Virus Non-Structural Protein NS5 Inhibits the RIG-I Pathway and Interferon Lambda 1 Promoter Activation by Targeting IKK Epsilon

    Get PDF
    The Zika virus (ZIKV) is a member of the Flaviviridae family and an important human pathogen. Most pathogenic viruses encode proteins that interfere with the activation of host innate immune responses. Like other flaviviruses, ZIKV interferes with the expression of interferon (IFN) genes and inhibits IFN-induced antiviral responses. ZIKV infects through epithelial barriers where IFN-λ1 is an important antiviral molecule. In this study, we analyzed the effects of ZIKV proteins on the activation of IFN-λ1 promoter. All ZIKV proteins were cloned and transiently expressed. ZIKV NS5, but no other ZIKV protein, was able to interfere with the RIG-I signaling pathway. This inhibition took place upstream of interferon regulatory factor 3 (IRF3) resulting in reduced phosphorylation of IRF3 and reduced activation of IFN-λ1 promoter. Furthermore, we showed that ZIKV NS5 interacts with the protein kinase IKKε, which is likely critical to the observed inhibition of phosphorylation of IRF3

    Zika Virus Non-Structural Protein NS5 Inhibits the RIG-I Pathway and Interferon Lambda 1 Promoter Activation by Targeting IKK Epsilon

    Get PDF
    The Zika virus (ZIKV) is a member of the Flaviviridae family and an important human pathogen. Most pathogenic viruses encode proteins that interfere with the activation of host innate immune responses. Like other flaviviruses, ZIKV interferes with the expression of interferon (IFN) genes and inhibits IFN-induced antiviral responses. ZIKV infects through epithelial barriers where IFN-lambda 1 is an important antiviral molecule. In this study, we analyzed the effects of ZIKV proteins on the activation of IFN-lambda 1 promoter. All ZIKV proteins were cloned and transiently expressed. ZIKV NS5, but no other ZIKV protein, was able to interfere with the RIG-I signaling pathway. This inhibition took place upstream of interferon regulatory factor 3 (IRF3) resulting in reduced phosphorylation of IRF3 and reduced activation of IFN-lambda 1 promoter. Furthermore, we showed that ZIKV NS5 interacts with the protein kinase IKK epsilon, which is likely critical to the observed inhibition of phosphorylation of IRF3.Peer reviewe

    Zika Virus Non-Structural Protein NS5 Inhibits the RIG-I Pathway and Interferon Lambda 1 Promoter Activation by Targeting IKK Epsilon

    Get PDF
    The Zika virus (ZIKV) is a member of the Flaviviridae family and an important human pathogen. Most pathogenic viruses encode proteins that interfere with the activation of host innate immune responses. Like other flaviviruses, ZIKV interferes with the expression of interferon (IFN) genes and inhibits IFN-induced antiviral responses. ZIKV infects through epithelial barriers where IFN-λ1 is an important antiviral molecule. In this study, we analyzed the effects of ZIKV proteins on the activation of IFN-λ1 promoter. All ZIKV proteins were cloned and transiently expressed. ZIKV NS5, but no other ZIKV protein, was able to interfere with the RIG-I signaling pathway. This inhibition took place upstream of interferon regulatory factor 3 (IRF3) resulting in reduced phosphorylation of IRF3 and reduced activation of IFN-λ1 promoter. Furthermore, we showed that ZIKV NS5 interacts with the protein kinase IKKε, which is likely critical to the observed inhibition of phosphorylation of IRF3

    SARS-CoV-2 Isolates Show Impaired Replication in Human Immune Cells but Differential Ability to Replicate and Induce Innate Immunity in Lung Epithelial Cells

    Get PDF
    The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells

    Detection and quantification of SARS-CoV-2 RNA in wastewater influent in relation to reported COVID-19 incidence in Finland

    Get PDF
    Wastewater-based surveillance is a cost-effective concept for monitoring COVID-19 pandemics at a population level. Here, SARS-CoV-2 RNA was monitored from a total of 693 wastewater (WW) influent samples from 28 wastewater treatment plants (WWTP, N = 21-42 samples per WWTP) in Finland from August 2020 to May 2021, covering WW of ca. 3.3 million inhabitants (~ 60% of the Finnish population). Quantity of SARS-CoV-2 RNA fragments in 24 h-composite samples was determined by using the ultrafiltration method followed by nucleic acid extraction and CDC N2 RT-qPCR assay. SARS-CoV-2 RNA signals at each WWTP were compared over time to the numbers of confirmed COVID-19 cases (14-day case incidence rate) in the sewer network area.& nbsp;Over the 10-month surveillance period with an extensive total number of samples, the detection rate of SARSCoV-2 RNA in WW was 79% (including 6% uncertain results, i.e., amplified only in one out of four, two original and two ten-fold diluted replicates), while only 24% of all samples exhibited gene copy numbers above the quantification limit. The range of the SARS-CoV-2 detection rate in WW varied from 33% (including 10% uncertain results) in Pietarsaari to 100% in Espoo. Only six out of 693 WW samples were positive with SARS-COV-2 RNA when the reported COVID-19 case number from the preceding 14 days was zero. Overall, the 14-day COVID19 incidence was 7.0, 18, and 36 cases per 100 000 persons within the sewer network area when the probability to detect SARS-CoV-2 RNA in wastewater samples was 50%, 75% and 95%, respectively. The quantification of SARS-CoV-2 RNA required significantly more COVID-19 cases: the quantification rate was 50%, 75%, and 95% when the 14-day incidence was 110, 152, and 223 COVID-19 cases, respectively, per 100 000 persons. Multiple linear regression confirmed the relationship between the COVID-19 incidence and the SARS-CoV-2 RNA quantified in WW at 15 out of 28 WWTPs (overall R2 = 0.36, p < 0.001). At four of the 13 WWTPs where a significant relationship was not found, the SARS-CoV-2 RNA remained below the quantification limit during the whole study period. In the five other WWTPs, the sewer coverage was less than 80% of the total population in the area and thus the COVID-19 cases may have been inhabitants from the areas not covered.& nbsp;Based on the results obtained, WW-based surveillance of SARS-CoV-2 could be used as an indicator for local and national COVID-19 incidence trends. Importantly, the determination of SARS-CoV-2 RNA fragments from WW is a powerful and non-invasive public health surveillance measure, independent of possible changes in the clinical testing strategies or in the willingness of individuals to be tested for COVID-19.Peer reviewe

    Infectious viruses from transfected SARS-CoV-2 genomic RNA

    Get PDF
    SARS-CoV-2 emerged at the end of 2019, and like other novel pathogens causing severe symptoms, WHO recommended heightened biosafety measures for laboratories working with the virus. The positive-stranded genomic RNA of coronaviruses has been known to be infectious since the 1970s, and overall, all experiments with the possibility of SARS-CoV-2 propagation are carried out in higher containment level laboratories. However, as SARS-CoV-2 RNA has been routinely handled in BSL-2 laboratories, the question of the true nature of RNA infectiousness has risen along with discussion of appropriate biosafety measures. Here, we studied the ability of native SARS-CoV-2 genomic RNA to produce infectious viruses when transfected into permissive cells and discussed the biosafety control measures related to these assays. In transfection assays large quantities of genomic vRNA of SARS-CoV-2 was required for a successful production of infectious viruses. However, the quantity of vRNA alone was not the only factor, and especially when the transfected RNA was derived from infected cells, even small amounts of genomic vRNA was enough for an infection. Virus replication was found to start rapidly after transfection, and infectious viruses were detected in the cell culture media at 24 h post-transfection. In addition, silica membrane-based kits were shown to be as good as traditional TRI-reagent based methods in extracting high-quality, 30 kb-long genomic vRNA. Taken together, our data indicates that all transfection experiments with samples containing genomic SARS-CoV-2 RNA should be categorized as a propagative work and the work should be conducted only in a higher containment BSL-3 laboratory
    corecore