38 research outputs found

    Human umbilical cord blood-borne fibroblasts contain marrow niche precursors that form a bone/marrow organoid in vivo

    Get PDF
    Human umbilical cord blood (CB) has attracted much attention as a reservoir for functional hematopoietic stem and progenitor cells, and, recently, as a source of blood-borne fibroblasts (CB-BFs). Previously, we demonstrated that bone marrow stromal cell (BMSC) and CB-BF pellet cultures make cartilage in vitro. Furthermore, upon in vivo transplantation, BMSC pellets remodelled into miniature bone/marrow organoids. Using this in vivo model, we asked whether CB-BF populations that express characteristics of the hematopoietic stem cell (HSC) niche contain precursors that reform the niche. CB ossicles were regularly observed upon transplantation. Compared with BM ossicles, CB ossicles showed a predominance of red marrow over yellow marrow, as demonstrated by histomorphological analyses and the number of hematopoietic cells isolated within ossicles. Marrow cavities from CB and BM ossicles included donor-derived CD146-expressing osteoprogenitors and host-derived mature hematopoietic cells, clonogenic lineage-committed progenitors and HSCs. Furthermore, human CD34+ cells transplanted into ossicle-bearing mice engrafted and maintained human HSCs in the niche. Our data indicate that CB- BFs are able to recapitulate the conditions by which the bone marrow microenvironment is formed and establish complete HSC niches, which are functionally supportive of hematopoietic tissue

    Intratumoral delivery of recombinant vaccinia virus encoding for ErbB2/Neu inhibits the growth of salivary gland carcinoma cells

    Get PDF
    The antitumor activity induced by intratumoral vaccination with poxvirus expressing a tumor antigen was shown to be superior to that induced by subcutaneous vaccination. Salivary gland carcinomas overexpress ErbB2. Trastuzumab, a monoclonal antibody to ErbB2, was proposed for salivary gland tumors treatment. We explored the effectiveness of intratumoral vaccination with the recombinant vaccinia virus ErbB2/Neu (rV-neuT) vaccine in hampering the growth of transplanted Neu-overexpressing BALB-neuT salivary gland cancer cells (SALTO) in BALB-neuT mice

    Superparamagnetic Iron Oxide Nanoparticles Labeling of Bone Marrow Stromal (Mesenchymal) Cells Does Not Affect Their “Stemness”

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPION) are increasingly used to label human bone marrow stromal cells (BMSCs, also called “mesenchymal stem cells”) to monitor their fate by in vivo MRI, and by histology after Prussian blue (PB) staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve the question of the effect of labeling on maintaining the “stemness” of cells within the BMSC population in vivo. Assays performed include colony forming efficiency, CD146 expression, gene expression profiling, and the “gold standard” of evaluating bone and myelosupportive stroma formation in vivo in immuncompromised recipients. SPION-labeling did not alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION labeling does not alter the differentiation potential of the subset of stem cells within BMSCs

    Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering

    No full text
    Objective. Bone tissue engineering is a promising approach for bone reconstruction in oral-maxillofacial surgery. This study investigates the suitability of oral skeletal tissues as convenient and accessible sources of osteogenic progenitors as an alternative to the iliac crest bone marrow. Study design. Samples of maxilla tuberosity (MT) and maxillary and mandibular periosteum (MP) were obtained during routine oral surgery, and donor site morbidity was assessed using a "split-mouth" approach. Cells isolated from MT (bone marrow stromal cells; MT-BMSCs) and from MP (periosteal cells; M-PCs), were analyzed for clonogenicity, phenotype, expression of osteogenic markers, and ability to form bone in vivo. Results. Both MT-BMSCs and M-PCs included clonogenic cells, showed comparable phenotypic profiles, and expressed early osteogenic markers. Most importantly, both cell populations formed bone upon ectopic in vivo transplantation. Conclusion. MT-BMSCs and M-PCs behaved as osteoprogenitor cells in vitro and in vivo. MT and MP may be considered as suitable sources of cells for bone tissue engineering in humans

    Transfer, Analysis, and Reversion of the Fibrous Dysplasia Cellular Phenotype in Human Skeletal Progenitors

    No full text
    Human skeletal progenitors were engineered to stably express R201C mutated, constitutively active Gs alpha using lentiviral vectors. Longterm transduced skeletal progenitors were characterized by an enhanced production of cAMP, indicating the transfer of the fundamental cellular phenotype caused by activating mutations of Gs alpha. Like skeletal progenitors isolated from natural fibrous dysplasia (FD) lesions, transduced cells could generate bone but not adipocytes or the hematopoietic microenvironment on in vivo transplantation. In vitro osteogenic differentiation was noted for the lack of mineral deposition, a blunted upregulation of osteocalcin, and enhanced upregulation of other osteogenic markers such as alkaline phosphatase (ALP) and bone sialoprotein (BSP) compared with controls. A very potent upregulation of RANKL expression was observed, which correlates with the pronounced osteoclastogenesis observed in FD lesions in vivo. Stable transduction resulted in a marked upregulation of selected phosphodiesterase (PDE) isoform mRNAs and a prominent increase in total PDE activity. This predicts an adaptive response in skeletal progenitors transduced with constitutively active, mutated Gs alpha. Indeed, like measurable cAMP levels, the differentiative responses of transduced skeletal progenitors were profoundly affected by inhibition of PDEs or lack thereof. Finally, using lentiviral vectors encoding short hairpin (sh) RNA interfering sequences, we demonstrated that selective silencing of the mutated allele is both feasible and effective in reverting the aberrant cAMP production brought about by the constitutively active Gs alpha and some of its effects on in vitro differentiation of skeletal progenitors. (C) 2010 American Society for Bone and Mineral Research

    Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro

    No full text
    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK) 1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-kappa B. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro
    corecore