147 research outputs found

    Stratified Slope-Waste Deposits in the Esino River Basin, Umbria-Marche Apennines, Central Italy

    Get PDF

    MicroRNA Alterations Induced in Human Skin by Diesel Fumes, Ozone, and UV Radiation

    Get PDF
    Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants

    Trend analysis of streamflows in relation to precipitation. A case study in central Italy

    Get PDF
    The monitoring of water resources is becoming increasingly important for humid temperate climates in light of climate change, which shows a generalised increase in temperatures and a decrease in precipitation, which is not generalised but relative to the area of interest. In this context, it is interesting to understand what the climatic changes have been, in terms of precipitation and how they have affected streamflows, by analysing them on a monthly basis. At the basin scale, interpolations were carried out with geostatistical methods using GIS software, spatialising the areal distribution of precipitation and obtaining an average value that can be correlated with water flows. As a pilot project, this research analysed the Upper Potenza basin in relation to the flow rates of the Potenza River over two reference periods, from 1964 to 1979 and from 2005 to 2020. The results show a decreasing trend in streamflows within the studied basin, while the precipitation trend decreases for the period 1964–1979 and increases for the period 2005–2020. Effective precipitation, in turn, shows a rather pronounced decrease in the more recent 2005–2020 period, due to climate change influencing the increase in temperature and consequently, the increase in evapotranspiration. In this context, it is significant to note that the Pearson correlation coefficient of streamflow to effective rainfall for both periods is about 0.8, suggesting that the net of anthropogenic disturbances, streamflow and actual precipitation maintain a high correlation. This model could be exported to other territories, in order to gain a global view for a better understanding and subsequent adaptation to ongoing climate change

    4D flow imaging of the thoracic aorta: is there an added clinical value?

    Get PDF
    Four-dimensional (4D) flow MRI has emerged as a powerful non-invasive technique in cardiovascular imaging, enabling to analyse in vivo complex flow dynamics models by quantifying flow parameters and derived features. Deep knowledge of aortic flow dynamics is fundamental to better understand how abnormal flow patterns may promote or worsen vascular diseases. In the perspective of an increasingly personalized and preventive medicine, growing interest is focused on identifying those quantitative functional features which are early predictive markers of pathological evolution. The thoracic aorta and its spectrum of diseases, as the first area of application and development of 4D flow MRI and supported by an extensive experimental validation, represents the ideal model to introduce this technique into daily clinical practice. The purpose of this review is to describe the impact of 4D flow MRI in the assessment of the thoracic aorta and its most common affecting diseases, providing an overview of the actual clinical applications and describing the potential role of derived advanced hemodynamic measures in tailoring follow-up and treatment

    Analysis of Snow Cover in the Sibillini Mountains in Central Italy

    Get PDF
    Research on solid precipitation and snow cover, especially in mountainous areas, suffers from problems related to the lack of on-site observations and the low reliability of measurements, which is often due to instruments that are not suitable for the environmental conditions. In this context, the study area is the Monti Sibillini National Park, and it is no exception, as it is a mountainous area located in central Italy, where the measurements are scarce and fragmented. The purpose of this research is to provide a characterization of the snow cover with regard to maximum annual snow depth, average snow depth during the snowy period, and days with snow cover on the ground in the Monti Sibillini National Park area, by means of ground weather stations, and also analyzing any trends over the last 30 years. For this research, in order to obtain reliable snow cover data, only data from weather stations equipped with a sonar system and manual weather stations, where the surveyor goes to the site each morning and checks the thickness of the snowpack and records, it were collected. The data were collected from 1 November to 30 April each year for 30 years, from 1991 to 2020; six weather stations were taken into account, while four more were added as of 1 January 2010. The longer period was used to assess possible ongoing trends, which proved to be very heterogeneous in the results, predominantly negative in the case of days with snow cover on the ground, while trends were predominantly positive for maximum annual snow depth and distributed between positive and negative for the average annual snow depth. The shorter period, 2010–2022, on the other hand, ensured the presence of a larger number of weather stations and was used to assess the correlation and presence of clusters between the various weather stations and, consequently, in the study area. Furthermore, in this way, an up-to-date nivometric classification of the study area was obtained (in terms of days with snow on the ground, maximum height of snowpack, and average height of snowpack), filling a gap where there had been no nivometric study in the aforementioned area. The interpolations were processed using geostatistical techniques such as co-kriging with altitude as an independent variable, allowing fairly precise spatialization, analyzing the results of cross-validation. This analysis could be a useful tool for hydrological modeling of the area, as well as having a clear use related to tourism and vegetation, which is extremely influenced by the nivometric variables in its phenology. In addition, this analysis could also be considered a starting point for the calibration of more recent satellite products dedicated to snow cover detection, in order to further improve the compiled climate characterizatio

    Granularity-induced gapless superconductivity in NbN films: evidence of thermal phase fluctuations

    Full text link
    Using a single coil mutual inductance technique, we measure the low temperature dependence of the magnetic penetration depth in superconducting NbN films prepared with similar critical temperatures around 16 K but with different microstructures. Only (100) epitaxial and weakly granular (100) textured films display the characteristic exponential dependence of conventional BCS s-wave superconductors. More granular (111) textured films exhibit a linear dependence, indicating a gapless state in spite of the s-wave gap. This result is quantitatively explained by a model of thermal phase fluctuations favored by the granular structure.Comment: 10 pages, 4 figures, to appear in Phys. Rev.

    Energy gap and proximity effect in MgB2MgB_2 superconducting wires

    Full text link
    Measurements of the penetration depth λ(T,H)\lambda (T,H) in the presence of a DC magnetic field were performed in MgB2MgB_2 wires. In as-prepared wires λ(T,H<130Oe)\lambda (T,H<130 Oe) shows a strong diamagnetic downturn below 10K\approx 10 K. A DC magnetic field of 130Oe130 Oe completely suppressed the downturn. The data are consistent with proximity coupling to a surface MgMg layer left during synthesis. A theory for the proximity effect in the clean limit, together with an assumed distribution of the MgMg layer thickness, qualitatively explains the field and temperature dependence of the data. Removal of the MgMg by chemical etching results in an exponential temperature dependence for λ(T)\lambda (T) with an energy gap of 2Δ(0)/Tc1.542 \Delta (0)/T_c\approx 1.54 (Δ(0)2.61meV\Delta(0) \approx 2.61 meV), in close agreement with recent measurements on commercial powders and single crystals. This minimum gap is only 44% of the BCS weak coupling value, implying substantial anisotropy.Comment: RevTeX 4, 4 EPS figure

    The optical response of Ba_{1-x}K_xBiO_3: Evidence for an unusual coupling mechanism of superconductivity?

    Full text link
    We have analysed optical reflectivity data for Ba_{1-x}K_xBiO_3 in the far-infrared region using Migdal-Eliashberg theory and found it inconsistent with standard electron-phonon coupling: Whereas the superconducting state data could be explained using moderate coupling, \lambda=0.7, the normal state properties indicate \lambda \le 0.2. We have found that such behaviour could be understood using a simple model consisting of weak standard electron-phonon coupling plus weak coupling to an unspecified high energy excitation near 0.4 eV. This model is found to be in general agreement with the reflectivity data, except for the predicted superconducting gap size. The additional high energy excitation suggests that the dominant coupling mechanism in Ba_{1-x}K_xBiO_3 is not standard electron-phonon.Comment: 5 pages REVTex, 5 figures, 32 refs, accepted for publication in Phys. Rev.

    The electronic state of vortices in YBa2Cu3Oy investigated by complex surface impedance measurement

    Full text link
    The electromagnetic response to microwaves in the mixed state of YBa2Cu3Oy(YBCO) was measured in order to investigate the electronic state inside and outside the vortex core. The magnetic-field dependence of the complex surface impedance at low temperatures was in good agreement with a general vortex dynamics description assuming that the field-independent viscous damping force and the linear restoring force were acting on the vortices. In other words, both real and imaginary parts of the complex resistivity, \rho_1, and \rho_2, were linear in B. This is explained by theories for d-wave superconductors. Using analysis based on the Coffey-Clem description of the complex penetration depth, we estimated that the vortex viscosity \eta at 10 K was (4 \sim 5) \times 10^{-7} Ns/m^2. This value corresponds to \omega_0 \tau \sim 0.3 - 0.5, where \omega_0 and \tau are the minimal gap frequency and the quasiparticle lifetime in the vortex core, respectively. These results suggest that the vortex core in YBCO is in the moderately clean regime. Investigation of the moderately clean vortex core in high-temperature superconductors is significant because physically new effects may be expected due to d-wave characteristics and to the quantum nature of cuprate superconductors. The behavior of Z_s as a function of B across the first order transition (FOT) of the vortex lattice was also investigated. Unlike Bi2Sr2CaCu2Oy (BSCCO), no distinct anomaly was observed around the FOT in YBCO. Our results suggest that the rapid increase of X_s due to the change of superfluid density at the FOT would be observed only in highly anisotropic two-dimensional vortex systems like BSCCO. We discuss these results in terms of the difference of the interlayer coupling and the energy scale between the two materials.Comment: 10 pages, 6 figures, to be published in Phys. Rev. B, one reference adde

    A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    Get PDF
    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting
    corecore