67 research outputs found

    Why 1,2‑quinone derivatives are more stable than their 2,3‑analogues?

    Get PDF
    In this work, we have studied the relative stability of 1,2- and 2,3-quinones. While 1,2-quinones have a closed-shell singlet ground state, the ground state for the studied 2,3-isomers is open-shell singlet, except for 2,3-naphthaquinone that has a closed-shell singlet ground state. In all cases, 1,2-quinones are more stable than their 2,3-counterparts. We analyzed the reasons for the higher stability of the 1,2-isomers through energy decomposition analysis in the framework of Kohn–Sham molecular orbital theory. The results showed that we have to trace the origin of 1,2-quinones’ enhanced stability to the more efficient bonding in the π-electron system due to more favorable overlap between the SOMOπ of the ·C4n−2H2n–CH·· and ··CH–CO–CO· fragments in the 1,2-arrangement. Furthermore, whereas 1,2-quinones present a constant trend with their elongation for all analyzed properties (geometric, energetic, and electronic), 2,3-quinone derivatives present a substantial breaking in monotonicity.European Union in the framework of European Social Fund through the Warsaw University of Technology Development Programme. O.A. S., H. S. and T.M. K

    Electron-topological, energetic and π-electron delocalization analysis of ketoenamine-enolimine tautomeric equilibrium

    Get PDF
    The ketoenamine-enolimine tautometic equilibrium has been studied by the analysis of aromaticity and electron-topological parameters. The influence of substituents on the energy of the transition state and of the tautomeric forms has been investigated for different positions of chelate chain. The quantum theory of atoms in molecules method (QTAIM) has been applied to study changes in the electron-topological parameters of the molecule with respect to the tautomeric equilibrium in intramolecular hydrogen bond. Dependencies of the HOMA aromaticity index and electron density at the critical points defining aromaticity and electronic state of the chelate chain on the transition state (TS), OH and HN tautomeric forms have been obtained

    Temperature-dependent polymorphism of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide: experimental and theoretical studies on intermolecular interactions in the crystal state

    Get PDF
    X-ray analysis of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide reveals the temperature-dependent polymorphism associated with the crystallographic symmetry conversion. The observed crystal structure transformation corresponds to a symmetry reduction from I41 /a (I) to P43 (II) space groups. The phase transition mainly concerns the subtle but clearly noticeable reorganization of molecules in the crystal space, with the structure of individual molecules left almost unchanged. The Hirshfeld surface analysis shows that various intermolecular contacts play an important role in the crystal packing, revealing graphically the differences in spatial arrangements of the molecules in both polymorphs. The N-oxide oxygen atom acts as a formally negatively charged hydrogen bonding acceptor in intramolecular hydrogen bond of N–H…O− type. The combined crystallographic and theoretical DFT methods demonstrate that the observed intramolecular N-oxide N–H…O hydrogen bond should be classified as a very strong charge-assisted and closed-shell non-covalent interaction

    π-Electronic Communication through Mono- and Multinuclear Gold(I) Complexes

    No full text
    We have theoretically studied gold(I) complexes of the type

    The use of topological analysis of electron density in characterization of noncovalent interactions

    No full text
    All atomic and molecular properties are governed by an electron density distribution. Thus, the methods that deal with an analysis of the electron density distribution should have a particular appeal for chemists and help to understand the electron structure of molecules. The Quantum Theory of Atoms in Molecules gives the unique opportunity to have an insight into a region (e.g., an atom) of a given system (e.g. a molecule), delivering partitioning scheme which is defined explicitly within the rigorous quantum theory, from one side, and is applicable for experimentally available set of observables, from the other side. In that way QTAIM delivers a chemist a theoretical tool to study a small part of a molecule only, instead of dealing with the total energy of a whole system. In consequence, QTAIM has become one of the most powerful utilities of modern chemistry, forming a bridge between advanced theoretical and experimental techniques. In particular the properties of the electron density function in the so-called bond critical point (BCP, the (3, -1) saddle point on electron density curvature) seem to be valuable information for chemists, since it was proven in many papers that the chemical bonding can be characterized and classified on the basis of electron density characteristics measured in BCPs . In this review we firstly give a brief introduction to the theory, explaining most basic terms and dependences. In the main part of the review we discuss application of QTAIM in the qualitative and quantitative analysis of several various noncovalent interactions, focusing readers attention on such aspects as classification of interactions and interaction energy assessment. Both theoretical and experimental approaches are taken into account. We also discuss extensions of QTAIM to the analysis of the so called source function – the method which additionally enlarge interpretative possibilities of its parent theory. Finally, we give some examples which perhaps escape a rigorous QTAIM definition of chemical bonding. We acquaint the potential reader with arguments being pro- and against the QTAIM-based deterministic model of a chemical bond
    corecore