10 research outputs found

    Targeting the NAD salvage synthesis pathway as a novel therapeutic strategy for osteosarcomas with low NAPRT expression

    Get PDF
    For osteosarcoma (OS), the most common primary malignant bone tumor, overall survival has hardly improved over the last four decades. Especially for metastatic OS, novel therapeutic targets are urgently needed. A hallmark of cancer is aberrant metabolism, which justifies targeting metabolic pathways as a promising therapeutic strategy. One of these metabolic pathways, the NAD+ synthesis pathway, can be considered as a potential target for OS treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the classical salvage pathway for NAD+ synthesis, and NAMPT is overexpressed in OS. In this study, five OS cell lines were treated with the NAMPT inhibitor FK866, which was shown to decrease nuclei count in a 2D in vitro model without inducing caspase-driven apoptosis. The reduction in cell viability by FK866 was confirmed in a 3D model of OS cell lines (n = 3). Interestingly, only OS cells with low nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1) RNA expression were sensitive to NAMPT inhibition. Using a publicly available (Therapeutically Applicable Research to Generate Effective Treatments (TARGET)) and a previously published dataset, it was shown that in OS cell lines and primary tumors, low NAPRT1 RNA expression correlated with NAPRT1 methylation around the transcription start site. These results suggest that targeting NAMPT in osteosarcoma could be considered as a novel therapeutic strategy, where low NAPRT expression can serve as a biomarker for the selection of eligible patients.Molecular tumour pathology - and tumour geneticsMTG

    Selection of Effective Therapies Using Three-Dimensional in vitro Modeling of Chondrosarcoma

    Get PDF
    Purpose: Chondrosarcomas are a group of cartilaginous malignant neoplasms characterized by the deposition of chondrogenic extracellular matrix. Surgical resection is currently the only curative treatment option, due to their high resistance to conventional chemotherapy and radiotherapy. Novel therapeutic treatment options may improve outcome. Predominantly used cell line monolayer in vitro models lack in vivo complexity, such as the presence of extracellular matrix, and differing oxygen access. Hence, we aimed to improve pre-clinical chondrosarcoma research by developing an alginate-based 3D cell culture model.Method: An alginate scaffold was applied to generate spheroids of three chondrosarcoma cell lines (CH2879, JJ012, SW1353). Morphological, histological and immunohistochemical assessment of the spheroids were used to characterize the chondrosarcoma model. Presto blue assay, morphological and immunohistochemical assessment were applied to assess spheroid response to a panel of chemotherapeutics and targeted therapies, which was compared to conventional 2D monolayer models. Synergistic effect of doxorubicin and ABT-737 (Bcl-2 inhibitor) was compared between monolayer and spheroid models using excess over Bliss. A 3D colony formation assay was developed for assessment of radiotherapy response.Results: Chondrosarcoma spheroids produced chondrogenic matrix and remained proliferative after 2 weeks of culture. When treated with chemotherapeutics, the spheroids were more resistant than their monolayer counterparts, in line with animal models and clinical data. Moreover, for sapanisertib (mTOR inhibitor) treatment, a recovery in chondrosarcoma growth, previously observed in mice models, was also observed using long-term treatment. Morphological assessment was useful in the case of YM-155 (survivin inhibitor) treatment where a fraction of the spheroids underwent cell death, however a large fraction remained proliferative and unaffected. Synergy was less pronounced in 3D compared to 2D. A 3D clonogenic assay confirmed increased resistance to radiotherapy in 3D chondrosarcoma spheroids.Conclusion: We demonstrate that the chondrosarcoma alginate spheroid model is more representative of chondrosarcoma in vivo and should be used instead of the monolayer model for therapy testing. Improved selection at in vitro stage of therapeutic testing will increase the amount of information available for experimental design of in vivo animal testing and later, clinical stages. This can potentially lead to increased likelihood of approval and success at clinical trials.Molecular tumour pathology - and tumour geneticsMTG

    Beyond the influence of IDH mutations: exploring epigenetic vulnerabilities in chondrosarcoma

    Get PDF
    Mutations in the isocitrate dehydrogenase (IDH1 or IDH2) genes are common in enchondromas and chondrosarcomas, and lead to elevated levels of the oncometabolite D-2-hydroxyglutarate causing widespread changes in the epigenetic landscape of these tumors. With the use of a DNA methylation array, we explored whether the methylome is altered upon progression from IDH mutant enchondroma towards high-grade chondrosarcoma. High-grade tumors show an overall increase in the number of highly methylated genes, indicating that remodeling of the methylome is associated with tumor progression. Therefore, an epigenetics compound screen was performed in five chondrosarcoma cell lines to therapeutically explore these underlying epigenetic vulnerabilities. Chondrosarcomas demonstrated high sensitivity to histone deacetylase (HDAC) inhibition in both 2D and 3D in vitro models, independent of the IDH mutation status or the chondrosarcoma subtype. siRNA knockdown and RNA expression data showed that chondrosarcomas rely on the expression of multiple HDACs, especially class I subtypes. Furthermore, class I HDAC inhibition sensitized chondrosarcoma to glutaminolysis and Bcl-2 family member inhibitors, suggesting that HDACs define the metabolic state and apoptotic threshold in chondrosarcoma. Taken together, HDAC inhibition may represent a promising targeted therapeutic strategy for chondrosarcoma patients, either as monotherapy or as part of combination treatment regimens.Toxicolog

    A murine mesenchymal stem cell model for initiating events in osteosarcomagenesis points to CDK4/CDK6 inhibition as a therapeutic target

    No full text
    Osteosarcoma is a high-grade bone-forming neoplasm, with a complex genome. Tumours frequently show chromothripsis, many deletions, translocations and copy number alterations. Alterations in the p53 or Rb pathway are the most common genetic alterations identified in osteosarcoma. Using spontaneously transformed murine mesenchymal stem cells (MSCs) which formed sarcoma after subcutaneous injection into mice, it was previously demonstrated that p53 is most often involved in the transformation towards sarcomas with complex genomics, including osteosarcoma. In the current study, not only loss of p53 but also loss of p16Ink4a is shown to be a driver of osteosarcomagenesis: murine MSCs with deficient p15Ink4b, p16Ink4a, or p19Arf transform earlier compared to wild-type murine MSCs. Furthermore, in a panel of nine spontaneously transformed murine MSCs, alterations in p15Ink4b, p16Ink4a, or p19Arf were observed in eight out of nine cases. Alterations in the Rb/p16 pathway could indicate that osteosarcoma cells are vulnerable to CDK4/CDK6 inhibitor treatment. Indeed, using two-dimensional (n = 7) and three-dimensional (n = 3) cultures of human osteosarcoma cell lines, it was shown that osteosarcoma cells with defective p16INK4A are sensitive to the CDK4/CDK6 inhibitor palbociclib after 72-hour treatment. A tissue microarray analysis of 109 primary tumour biopsies revealed a subset of patients (20–23%) with intact Rb, but defective p16 or overexpression of CDK4 and/or CDK6. These patients might benefit from CDK4/CDK6 inhibition, therefore our results are promising and might be translated to the clinic

    Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic "Stromal" Cells from Giant Cell Tumors of Bone

    No full text
    Simple Summary Giant cell tumor of bone (GCTB) is an intermediate bone neoplasm which consists of several cell populations, including the neoplastic "stromal" cells. These cells harbor a mutation in one of the histone H3.3 genes (H3F3A), and are therefore considered as the driving component of GCTB. This mutation causes changes in the epigenetic landscape, leading to aberrant gene expression patterns that may drive tumor growth. Surgery is currently the only curative treatment option because contemporary systemic therapies cannot remove the neoplastic cells from GCTB lesions, leading to re-outgrowth of the tumor when the treatment is discontinued. Therefore, the aim of this study was to explore whether therapeutic targeting of the epigenome can eliminate the neoplastic cells from GCTB lesions. The findings from this study indicate that histone deacetylase (HDAC) inhibitors may represent such a treatment strategy, which could improve the quality of life of GCTB patients who currently require life-long treatment. The neoplastic "stromal" cells in giant cell tumor of bone (GCTB) harbor a mutation in the H3F3A gene, which causes alterations in the epigenome. Current systemic targeted therapies, such as denosumab, do not affect the neoplastic cells, resulting in relapse upon treatment discontinuation. Therefore, this study examined whether targeting the epigenome could eliminate the neoplastic cells from GCTB. We established four novel cell lines of neoplastic "stromal" cells that expressed the H3F3A p.G34W mutation. These cell lines were used to perform an epigenetics compound screen (n = 128), which identified histone deacetylase (HDAC) inhibitors as key epigenetic regulators in the neoplastic cells. Transcriptome analysis revealed that the neoplastic cells expressed all HDAC isoforms, except for HDAC4. Therefore, five HDAC inhibitors targeting different HDAC subtypes were selected for further studies. All GCTB cell lines were very sensitive to HDAC inhibition in both 2D and 3D in vitro models, and inductions in histone acetylation, as well as apoptosis, were observed. Thus, HDAC inhibition may represent a promising therapeutic strategy to eliminate the neoplastic cells from GCTB lesions, which remains the paramount objective for GCTB patients who require life-long treatment with denosumab.Cancer Signaling networks and Molecular Therapeutic

    Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic "Stromal" Cells from Giant Cell Tumors of Bone

    No full text
    Simple Summary Giant cell tumor of bone (GCTB) is an intermediate bone neoplasm which consists of several cell populations, including the neoplastic "stromal" cells. These cells harbor a mutation in one of the histone H3.3 genes (H3F3A), and are therefore considered as the driving component of GCTB. This mutation causes changes in the epigenetic landscape, leading to aberrant gene expression patterns that may drive tumor growth. Surgery is currently the only curative treatment option because contemporary systemic therapies cannot remove the neoplastic cells from GCTB lesions, leading to re-outgrowth of the tumor when the treatment is discontinued. Therefore, the aim of this study was to explore whether therapeutic targeting of the epigenome can eliminate the neoplastic cells from GCTB lesions. The findings from this study indicate that histone deacetylase (HDAC) inhibitors may represent such a treatment strategy, which could improve the quality of life of GCTB patients who currently require life-long treatment. The neoplastic "stromal" cells in giant cell tumor of bone (GCTB) harbor a mutation in the H3F3A gene, which causes alterations in the epigenome. Current systemic targeted therapies, such as denosumab, do not affect the neoplastic cells, resulting in relapse upon treatment discontinuation. Therefore, this study examined whether targeting the epigenome could eliminate the neoplastic cells from GCTB. We established four novel cell lines of neoplastic "stromal" cells that expressed the H3F3A p.G34W mutation. These cell lines were used to perform an epigenetics compound screen (n = 128), which identified histone deacetylase (HDAC) inhibitors as key epigenetic regulators in the neoplastic cells. Transcriptome analysis revealed that the neoplastic cells expressed all HDAC isoforms, except for HDAC4. Therefore, five HDAC inhibitors targeting different HDAC subtypes were selected for further studies. All GCTB cell lines were very sensitive to HDAC inhibition in both 2D and 3D in vitro models, and inductions in histone acetylation, as well as apoptosis, were observed. Thus, HDAC inhibition may represent a promising therapeutic strategy to eliminate the neoplastic cells from GCTB lesions, which remains the paramount objective for GCTB patients who require life-long treatment with denosumab
    corecore