28 research outputs found

    Five blood pressure loci identified by an updated genome-wide linkage scan: meta-analysis of the Family Blood Pressure Program.

    Get PDF
    BACKGROUND: A preliminary genome-wide linkage analysis of blood pressure in the Family Blood Pressure Program (FBPP) was reported previously. We harnessed the power and ethnic diversity of the final pooled FBPP dataset to identify novel loci for blood pressure thereby enhancing localization of genes containing less common variants with large effects on blood pressure levels and hypertension. METHODS: We performed one overall and 4 race-specific meta-analyses of genome-wide blood pressure linkage scans using data on 4,226 African-American, 2,154 Asian, 4,229 Caucasian, and 2,435 Mexican-American participants (total N = 13,044). Variance components models were fit to measured (raw) blood pressure levels and two types of antihypertensive medication adjusted blood pressure phenotypes within each of 10 subgroups defined by race and network. A modified Fisher's method was used to combine the P values for each linkage marker across the 10 subgroups. RESULTS: Five quantitative trait loci (QTLs) were detected on chromosomes 6p22.3, 8q23.1, 20q13.12, 21q21.1, and 21q21.3 based on significant linkage evidence (defined by logarithm of odds (lod) score ≥3) in at least one meta-analysis and lod scores ≥1 in at least 2 subgroups defined by network and race. The chromosome 8q23.1 locus was supported by Asian-, Caucasian-, and Mexican-American-specific meta-analyses. CONCLUSIONS: The new QTLs reported justify new candidate gene studies. They may help support results from genome-wide association studies (GWAS) that fall in these QTL regions but fail to achieve the genome-wide significance

    Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension

    Get PDF
    The SPIRIT 2013 (The Standard Protocol Items: Recommendations for Interventional Trials) statement aims to improve the completeness of clinical trial protocol reporting, by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there is a growing recognition that interventions involving artificial intelligence need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI extension is a new reporting guideline for clinical trials protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI. Both guidelines were developed using a staged consensus process, involving a literature review and expert consultation to generate 26 candidate items, which were consulted on by an international multi-stakeholder group in a 2-stage Delphi survey (103 stakeholders), agreed on in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items, which were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations around the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer-reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial

    Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension

    Get PDF
    The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human–AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret, and critically appraise the design and risk of bias for a planned clinical trial

    Different regression equations relate age to the incidence of Lauren types 1 and 2 stomach cancer in the SEER database: these equations are unaffected by sex or race

    Get PDF
    BACKGROUND: Although impacts upon gastric cancer incidence of race, age, sex, and Lauren type have been individually explored, neither their importance when evaluated together nor the presence or absence of interactions among them have not been fully described. METHODS: This study, derived from SEER (Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute) data, analyzed the incidences of gastric cancer between the years 1992–2001. There were 7882 patients who had developed gastric cancer. The total denominator population was 145,155, 669 persons (68,395,787 for 1992–1996, 78,759,882 for 1997–2001). Patients with multiple tumors were evaluated as per the default of the SEER*Stat program. 160 age-, five year period (1992–1996 vs 1997–2001)-, sex-, race (Asian vs non-Asian)-, Lauren type- specific incidences were derived to form the stratified sample evaluated by linear regression. (160 groups = 2 five year periods × 2 race groups × 2 sexes × 2 Lauren types × 10 age groups.) Linear regression was used to analyze the importance of each of these explanatory variables and to see if there were interactions among the explanatory variables. RESULTS: Race, sex, age group, and Lauren type were found to be important explanatory variables, as were interactions between Lauren type and each of the other important explanatory variables. In the final model, the contribution of each explanatory variable was highly statistically significant (t > 5, d.f. 151, P < 0.00001). The regression equation for Lauren type 1 had different coefficients for the explanatory variables Race, Sex, and Age, than did the regression equation for Lauren type 2. CONCLUSION: The change of the incidence of stomach cancer with respect to age for Lauren type 1 stomach cancer differs from that for Lauren type 2 stomach cancers. The relationships between age and Lauren type do not differ across gender or race. The results support the notion that Lauren type 1 and Lauren type 2 gastric cancers have different etiologies and different patterns of progression from pre-cancer to cancer. The results should be validated by evaluation of other databases

    Genome-Wide Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 African Americans: The NHLBI CARe Project

    Get PDF
    Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia

    Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension

    Get PDF
    The SPIRIT 2013 (The Standard Protocol Items: Recommendations for Interventional Trials) statement aims to improve the completeness of clinical trial protocol reporting, by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there is a growing recognition that interventions involving artificial intelligence need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI extension is a new reporting guideline for clinical trials protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI. Both guidelines were developed using a staged consensus process, involving a literature review and expert consultation to generate 26 candidate items, which were consulted on by an international multi-stakeholder group in a 2-stage Delphi survey (103 stakeholders), agreed on in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items, which were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations around the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer-reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial
    corecore