47 research outputs found

    Spatial organisation of the Ɵ-globin locus: the active chromatin Hub

    Get PDF

    Spatial organisation of the Ɵ-globin locus

    Get PDF
    Alle multi-cellulaire organismen beginnen als een enkele bevruchte eicel. Gedurende de differentiatie wordt het aantal cellen vermeerderd door middel van celdeling. De cellen specialiseren zich tevens in verschillende celtypes zoals hersen-, bloed- en spiercellen. Toch bevatten al deze cellen dezelfde genetische informatie dat is opgeslagen in miljoenen base paren DNA, welke georganiseerd zijn in grote elementen die chromosomen worden genoemd. Een DNA sequentie die codeert voor een bepaalde overerfbare eigenschap (vaak een eiwit) wordt een gen genoemd. Het gehalte aan genen is gelijk in elke cel (ongeveer 25.000 genen). Het verschil tussen de diverse celtypes wordt daarom niet bepaald door de genomische opbouw van een cel maar juist hoe deze genomische opbouw gebruikt wordt, of anders gezegd; welke genen geactiveerd of juist onderdrukt worden. De activatie van genen wordt strak gereguleerd qua plaats en tijd en een gebrek aan juiste transcriptionele regulatie resulteert vaak in allerlei ziekten zoals b.v. kanker. Bij de juiste transcriptionele activatie van genen in hogere eukaryoten zijn verschillende regulerende DNA elementen betrokken; de promoter wordt vlakbij het gen gevonden terwijl andere elementen zoals enhancers zeer ver van het te activeren gen kunnen liggen. Een van de belangrijkste vragen in de moleculaire biologie is hoe deze zogeheten cis-regulerende elementen over deze aanzienlijke afstanden met de promoter van een gen kunnen communiceren. Verschillende mechanismen zijn voorgesteld voor deze communicatie: o.a. het looping model, het tracking model en het linking model. Deze modellen worden in hoofdstuk 1 in detail besproken. Een goed voorbeeld van een gespecialiseerde cel in zoogdieren is de rode bloed cel. Het meest voorkomende molecuul in rode bloedcellen is het zuurstof en kooldioxide transporterende hemoglobine dat opgebouwd is uit twee a-globine eiwitten, twee Ɵ-globine eiwitten en vier heem groepen. Het Ɵ-globine eiwit wordt gecodeerd door genen in het Ɵ-globine locus. Het muizen Ɵ-globine locus bevat vier Ɵ-achtige genen. Twee daarvan, de embryonale Ɵ-globine genen, komen in het embryo tot expressie terwijl de twee andere genen, de volwassen Ɵ-globine genen actief worden in een later stadium van de ontwikkeling

    Transcription factor binding at enhancers: Shaping a genomic regulatory landscape in flux

    Get PDF
    The mammalian genome is packed tightly in the nucleus of the cell. This packing is primarily facilitated by histone proteins and results in an ordered organization of the genome in chromosome territories that can be roughly divided in heterochromatic and euchromatic domains. On top of this organization several distinct gene regulatory elements on the same chromosome or other chromosomes are thought to dynamically communicate via chromatin looping. Advances in genome-wide technologies have revealed the existence of a plethora of these regulatory elements in various eukaryotic genomes. These regulatory elements are defined by particular in vitro assays as promoters, enhancers, insulators, and boundary elements. However, recent studies indicate that the in vivo distinction between these elements is often less strict. Regulatory elements are bound by a mixture of common and lineage-specific transcription factors which mediate the long-range interactions between these elements. Inappropriate modulation of the binding of these transcription factors can alter the interactions between regulatory elements, which in turn leads to aberrant gene expression with disease as an ultimate consequence. Here we discuss the bi-modal behavior of regulatory elements that act in cis (with a focus on enhancers), how their activity is modulated by transcription factor binding and the effect this has on gene regulation

    A Two-Color Haploid Genetic Screen Identifies Novel Host Factors Involved in HIV-1 Latency

    Get PDF
    To identify novel host factors as putative targets to reverse HIV-1 latency, we performed an insertional mutagenesis genetic screen in a latent HIV-1 infected pseudohaploid KBM7 cell line (Hap-Lat). Following mutagenesis, insertions were mapped to the genome, and bioinformatic analysis resulted in the identification of 69 candidate host genes involved in maintaining HIV-1 latency. A select set of candidate genes was functionally validated using short hairpin RNA (shRNA)-mediated depletion in latent HIV-1 infected J-Lat A2 and 11.1 T cell lines. We confirmed ADK, CHD9, CMSS1, EVI2B, EXOSC8, FAM19A, GRIK5, IRF2BP2, NF1, and USP15 as novel host factors involved in the maintenance of HIV-1 latency. Chromatin immunoprecipitation assays indicated that CHD9, a chromodomain helicase DNA-binding protein, maintains HIV-1 latency via direct association with the HIV-1 5ā€² long terminal repeat (LTR), and its depletion results in increased histone acetylation at the HIV-1 promoter, concomitant with HIV-1 latency reversal. FDA-approved inhibitors 5-iodotubercidin, trametinib, and topiramate, targeting ADK, NF1, and GRIK5, respectively, were characterized for their latency reversal potential. While 5-iodotubercidin exhibited significant cytotoxicity in both J-Lat and primary CD4(+) T cells, trametinib reversed latency in J-Lat cells but not in latent HIV-1 infected primary CD4(+) T cells. Importantly, topiramate reversed latency in cell line models, in latently infected primary CD4(+) T cells, and crucially in CD4(+) T cells from three people living with HIV-1 (PLWH) under suppressive antiretroviral therapy, without inducing T cell activation or significant toxicity. Thus, using an adaptation of a haploid forward genetic screen, we identified novel and druggable host factors contributing to HIV-1 latency

    PCID2 dysregulates transcription and viral RNA processing to promote HIV-1 latency

    Get PDF
    HIV-1 latency results from tightly regulated molecular processes that act at distinct steps of HIV-1 gene expression. Here, we characterize PCI domain-containing 2 (PCID2) protein, a subunit of the transcription and export complex 2 (TREX2) complex, to enforce transcriptional repression and post-transcriptional blocks to HIV-1 gene expression during latency. PCID2 bound the latent HIV-1 LTR (long terminal repeat) and repressed transcription initiation during latency. Depletion of PCID2 remodeled the chromatin landscape at the HIV-1 promoter and resulted in transcriptional activation and latency reversal. Immunoprecipitation coupled to mass spectrometry identified PCID2-interacting proteins to include negative viral RNA (vRNA) splicing regulators, and PCID2 depletion resulted in over-splicing of intron-containing vRNA in cell lines and primary cells obtained from PWH. MCM3AP and DSS1, two other RNA-binding TREX2 complex subunits, also inhibit transcription initiation and vRNA alternative splicing during latency. Thus, PCID2 is a novel HIV-1 latency-promoting factor, which in context of the TREX2 sub-complex PCID2-DSS1-MCM3AP blocks transcription and dysregulates vRNA processing.</p

    Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci

    Get PDF
    Progenitor-B cells recombine their immunoglobulin (Ig) loci to create unique antigen receptors. Despite a common recombination machinery, the Ig heavy and Ig light chain loci rearrange in a stepwise manner. We studied pre-pro-B cells and Rag-/- progenitor-B cells to determine whether Ig locus contraction or nuclear positioning is decisive for stepwise rearrangements. We found that both Ig loci were contracted in pro-B and pre-B cells. Igh relocated from the nuclear lamina to central domains only at the pro-B cell stage, whereas, IgĆŖ remained sequestered at the lamina, and only at the pre-B cell stage located to central nuclear domains. Finally, in vitro induced re-positioning of Ig alleles away from the nuclear periphery increased germline transcription of Ig loci in pre-pro-B cells. Thus, Ig locus contraction juxtaposes genomically distant elements to mediate efficient recombination, however, sequential positioning of Ig loci away from the nuclear periphery determines stage-specific accessibility of Ig loci

    Allele-specific long-distance regulation dictates IL-32 isoform switching and mediates susceptibility to HIV-1

    Get PDF
    We integrated data obtained from HIV-1 genome-wide association studies with T cell-derived epigenome data and found that the noncoding intergenic variant rs4349147, which is statistically associated with HIV-1 acquisition, is located in a CD4+ T cell-specific deoxyribonuclease I hypersensitive region, suggesting regulatory potential for this variant. Deletion of the rs4349147 element in Jurkat cells strongly reduced expression of interleukin-32 (IL-32), approximately 10-kb upstream, and chromosome conformation capture assays identified a chromatin loop between rs4349147 and the IL-32 promoter validating its function as a long-distance enhancer. We generated single rs4349147-A or rs4349147-G allele clones and demonstrated that IL-32 enhancer activity and interaction with the IL-32 promoter are strongly allele dependent; rs4349147 -/A cells display reduced IL-32 expression and altered chromatin conformation as compared to rs4349147 G/- cells. Moreover, RNA sequencing demonstrated that rs4349147 G/- cells express a lower relative ratio of IL-32Ī± to non-a isoforms than rs4349147 -/A cells and display increased expression of lymphocyte activation factors rendering them more prone to infection with HIV-1. In agreement, in primary CD4+ T cells, both treatment with recombinant IL-32Ī³ (rIL-32Ī³) but not rIL-32Ī±, and exogenous lentiviral overexpression of IL-32Ī³ or IL-32Ī² but not IL-32Ī± resulted in a proinflammatory T cell cytokine environment concomitant with increased susceptibility to HIV infection. Our data demonstrate that rs4349147-G promotes transcription of non-IL-32Ī± isoforms, generating a proinflammatory e

    Catchet-MS identifies IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents

    Get PDF
    A major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has been challenging. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to probe the differential protein composition of the latent and activated HIV-1 5ā€²LTR. Catchet-MS identified known and novel latent 5ā€²LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs. We demonstrate that, by targeting IKZF1 for degradation, these compounds reverse HIV-1 latency in CD4+Ā T-cells isolated from virally suppressed people living with HIV-1 and that they are able to synergize with other known LRAs

    The BAF complex inhibitor pyrimethamine reverses HIV-1 latency in people with HIV-1 on antiretroviral therapy

    Get PDF
    Reactivation of the latent HIV-1 reservoir is a first step toward triggering reservoir decay. Here, we investigated the impact of the BAF complex inhibitor pyrimethamine on the reservoir of people living with HIV-1 (PLWH). Twenty-eight PLWH on suppressive antiretroviral therapy were randomized (1:1:1:1 ratio) to receive pyrimethamine, valproic acid, both, or no intervention for 14 days. The primary end point was change in cell-associated unspliced (CA US) HIV-1 RNA at days 0 and 14. We observed a rapid, modest, and significant increase in (CA US) HIV-1 RNA in response to pyrimethamine exposure, which persisted throughout treatment and follow-up. Valproic acid treatment alone did not increase (CA US) HIV-1 RNA or augment the effect of pyrimethamine. Pyrimethamine treatment did not result in a reduction in the size of the inducible reservoir. These data demonstrate that the licensed drug pyrimethamine can be repurposed as a BAF complex inhibitor to reverse HIV-1 latency in vivo in PLWH, substantiating its potential advancement in clinical studies.</p

    Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up

    Get PDF
    In the International Visible Trait Genetics (VisiGen) Consortium, we investigated the genetics of human skin color by combining a series of genome-wide association studies (GWAS) in a total of 17,262 Europeans with functional follow-up of discovered loci. Our GWAS provide the first genome-wide significant evidence for chromosome 20q11.22 harboring the ASIP gene being explicitly associated with skin color in Europeans. In addition, genomic loci at 5p13.2 (SLC45A2), 6p25.3 (IRF4), 15q13.1 (HERC2/OCA2), and 16q24.3 (MC1R) were confirmed to be involved in skin coloration in Europeans. In follow-up gene expression and regulation studies of 22 genes in 20q11.22, we highlighted two novel genes EIF2S2 and GSS, serving as competing functional candidates in this region and providing future research lines. A genetically inferred skin color score obtained from the 9 top-associated SNPs from 9 genes in 940 worldwide samples (HGDP-CEPH) showed a clear gradual pattern in Western Eurasians similar to the distribution of physical skin color, suggesting the used 9 SNPs as suitable markers for DNA prediction of skin color in Europeans and neighboring populations, relevant in future forensic and anthropological investigations
    corecore