2 research outputs found

    Spectral library search for improved TMTpro labelled peptide assignment in human plasma proteomics

    Get PDF
    Funding Information: This work was supported by a research grant from the Danish Cardiovascular Academy, which is funded by the Novo Nordisk Foundation, grant number NNF20SA0067242 and the Danish Heart Foundation. Publisher Copyright: © 2023 The Authors. Proteomics published by Wiley-VCH GmbH.Clinical biomarker discovery is often based on the analysis of human plasma samples. However, the high dynamic range and complexity of plasma pose significant challenges to mass spectrometry-based proteomics. Current methods for improving protein identifications require laborious pre-analytical sample preparation. In this study, we developed and evaluated a TMTpro-specific spectral library for improved protein identification in human plasma proteomics. The library was constructed by LC-MS/MS analysis of highly fractionated TMTpro-tagged human plasma, human cell lysates, and relevant arterial tissues. The library was curated using several quality filters to ensure reliable peptide identifications. Our results show that spectral library searching using the TMTpro spectral library improves the identification of proteins in plasma samples compared to conventional sequence database searching. Protein identifications made by the spectral library search engine demonstrated a high degree of complementarity with the sequence database search engine, indicating the feasibility of increasing the number of protein identifications without additional pre-analytical sample preparation. The TMTpro-specific spectral library provides a resource for future plasma proteomics research and optimization of search algorithms for greater accuracy and speed in protein identifications in human plasma proteomics, and is made publicly available to the research community via ProteomeXchange with identifier PXD042546.publishersversionepub_ahead_of_prin

    Identification of Highly Sensitive Pleural Effusion Protein Biomarkers for Malignant Pleural Mesothelioma by Affinity-Based Quantitative Proteomics

    No full text
    Malignant pleural mesothelioma (MPM) is an asbestos-associated, highly aggressive cancer characterized by late-stage diagnosis and poor prognosis. Gold standards for diagnosis are pleural biopsy and cytology of pleural effusion (PE), both of which are limited by low sensitivity and markedly inter-observer variations. Therefore, the assessment of PE biomarkers is considered a viable and objective diagnostic tool for MPM diagnosis. We applied a novel affinity-enrichment mass spectrometry-based proteomics method for explorative analysis of pleural effusions from a prospective cohort of 84 patients referred for thoracoscopy due to clinical suspicion of MPM. Protein biomarkers with a high capability to discriminate MPM from non-MPM patients were identified, and a Random Forest algorithm was applied for building classification models. Immunohistology of pleural biopsies confirmed MPM in 40 patients and ruled out MPM in 44 patients. Proteomic analysis of pleural effusions identified panels of proteins with excellent diagnostic properties (90–100% sensitivities, 89–98% specificities, and AUC 0.97–0.99) depending on the specific protein combination. Diagnostic proteins associated with cancer growth included galactin-3 binding protein, testican-2, haptoglobin, Beta ig-h3, and protein AMBP. Moreover, we also confirmed previously reported diagnostic accuracies of the MPM markers fibulin-3 and mesothelin measured by two complementary mass spectrometry-based methods. In conclusion, a novel affinity-enrichment mass spectrometry-based proteomics identified panels of proteins in pleural effusion with extraordinary diagnostic accuracies, which are described here for the first time as biomarkers for MPM
    corecore