35 research outputs found

    Head Tilt Posturography to Enhance Balance Control Assessment for Astronauts: A Case Study

    Get PDF
    For many years, we have used a standard clinical computerized dynamic posturography (CDP) protocol to assess recovery of integrated sensory-motor function in astronauts returning from space flight. The most reliable indications of postflight crew performance capabilities have been obtained from the sensory organization tests (SOTs) within the CDP protocol, particularly SOTs 5 (eyes closed, surface support sway referenced) and 6 (eyes open, surface support and visual surround sway referenced), which are sensitive to changes in availability and/or utilization of vestibular cues. We have observed, however, that some astronauts exhibiting visible signs of incomplete sensory-motor recovery are able to score within clinical norms on standard SOTs 5 and 6 trials, perhaps as a result of cognitive strategies driven by their naturally competitive natures. To improve the sensitivity of the CDP protocol for assessing recovery of integrated sensory-motor function and fitness to return to duties and/or activities of daily living, we have introduced pitch plane head tilt SOT trials to our protocol. In a preliminary study of 5 short duration (~11day missions) astronauts, we showed that they were unable to maintain balance on landing day when performing dynamic head tilt trials, despite scoring within the clinically normal range on the standard SOT trials. The present case report illustrates the advantages of including head tilt trials for assessing sensory-motor recovery in long duration crewmembers

    Recent US Space Biomedical Research Activities

    Get PDF
    No abstract availabl

    Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge

    Get PDF
    Artificial gravity (AG) has been proposed as a potential countermeasure to the debilitating physiological effects of long duration space flight. The most economical means of implementing AG may be through the use of a short-radius (2m or less) centrifuge. For such a device to produce gravitational forces comparable to those on earth requires rotation rates in excess of 20 revolutions per minute (rpm). Head turns made out of the plane of rotation at these rates, as may be necessary if exercise is combined with AG, result in cross-coupled stimuli (CCS) that cause adverse side effects including motion sickness, illusory sensations of motion, and inappropriate eye movements. Recent studies indicate that people can adapt to CCS and reduce these side effects by making multiple head turns during centrifuge sessions conducted over consecutive days. However, about 25% of the volunteers for these studies have difficulty tolerating the CCS adaptation paradigm and often drop out due to motion sickness symptoms. The goal of this investigation was to determine whether vivid motor imagery could be used as a pseudostimulus for adapting subjects to this unique environment. Twenty four healthy human subjects (14 males, 10 females), ranging in age from 21 to 48 years (mean 33, sd 7 years) took part in this study. The experimental stimuli were produced using the NASA JSC short-arm centrifuge (SAC). Subjects were oriented supinely on this device with the nose pointed toward the ceiling and head centered on the axis of rotation. Thus, centrifuge rotation was in the body roll plane. After ramp-up the SAC rotated clockwise at a constant rate of 23 rpm, producing a centrifugal force of approximately 1 g at the feet. Semicircular canal CCS were produced by having subjects make yaw head turns from the nose up (NU) position to the right ear down (RED) position and from RED to NU. Each head turn was completed in about one second, and a 30 second recovery period separated consecutive head movements. Participants were randomly assigned to one of three groups (n=8 per group): physical adapters (PA), mental adapters (MA), or a control group (CG). Each subject participated in a one hour test session on each of three consecutive days. Each test session consisted of an initial (preadaptation) period during which the subject performed six CCS maneuvers in the dark, followed by an adaptation period with internal lighting on the centrifuge, and a final (postadaptation) period during which six more CCS maneuvers were performed in the dark. For the PA group, the adaptation period consisted of performing 30 additional CCS maneuvers in the light. For the MA and CG group the centrifuge was ramped down to 0 rpm after the pre-adaptation period and ramped back up to 23 rpm before the post-adaptation period. For the both of these groups, the adaptation period consisted of making 30 CCS maneuvers in the light with the centrifuge stationary (so no cross-coupling occurred). MA group subjects were instructed to vividly imagine the provocative sensations produced by the preadaptation CCS maneuvers in terms of magnitude, duration, and direction of illusory body tilt, as well as any accompanying levels of motion sickness. CG group subjects were asked to answer low imagery content questions (trivial pursuit) during each adaptation period head turn. During the 30 second recovery following each head turn, psychophysical data were collected including self reports of motion sickness, magnitude and direction estimates of illusory body tilt, and the overall duration of these sensations. A multilevel mixed effects linear regression analysis performed on all response variables indicated that all three groups experienced some psychophysical adaptation across the three test sessions. For illusory tilt magnitude, the PA group exhibited the most overall adaptation, followed by the MA group, and the CG group. The slopes of these adaptation trajectories by group over day were significantly diffent from one another. For the perceived duration of sensations, the CG group again exhibited the least amount of adaptation. However, the rates of adaptation of the PA and the MA groups were indistinguishable, suggesting that the imagined pseudostimulus appeared to be just as effective a means of adaptation as the actual stimulus. The MA group's rate of adaptation to motion sickness symptoms was also comparable to the PA group. The use of vivid motor imagery may be an effective method for adapting to the illusory sensations and motion sickness symptoms produced by cross-coupled stimuli. For space-based AG applications, this technique may prove quite useful in retaining astronauts considered highly susceptible to motion sickness as it reduces the number of actual CCS required to attain adaptation

    Addressing Human System Risks to Future Space Exploration

    Get PDF
    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then assessed the likelihood and consequences of each risk against each DRM, using three levels of likelihood (Low: less than or equal to 0.1%; Medium: 0.1%1.0%; High: greater than or equal to 1.0%) and four levels of consequence ranging from Very Low (temporary or insignificant) to High (death, loss of mission, or significant reduction to length or quality of life). Quantitative evidence from clinical, operational, and research sources were used whenever available. Qualitative evidence was used when quantitative evidence was unavailable. Expert opinion was used whenever insufficient evidence was available. Results: A set of 30 risks emerged that will require further mitigation efforts before being accepted by the Agency. The likelihood by consequence risk assessment process provided a means of prioritizing among the risks identified. For each of the high priority risks, a plan was developed to perform research, technology, or standards development thought necessary to provide suitable reduction of likelihood or consequence to allow agency acceptance. Conclusion: The HSRB process has successfully identified a complete set of risks to human space travelers on planned exploration missions based on the best evidence available today. Risk mitigation plans have been established for the highest priority risks. Each risk will be reassessed annually to track the progress of our risk mitigation efforts

    Tactile Sensory Supplementation of Gravitational References to Optimize Sensorimotor Recovery

    Get PDF
    Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y- Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. This investigation has explored the effects of Tongue Elecrotactile Feedback (TEF) for control of posture and movement as a sensorimotor countermeasure, specifically addressing the optimal location of movement sensors

    Which Way is Up? Lessons Learned from Space Shuttle Sensorimotor Research

    Get PDF
    The Space Shuttle Program provided the opportunity to examine sensorimotor adaptation to space flight in unprecedented numbers of astronauts, including many over multiple missions. Space motion sickness (SMS) severity was highly variable across crewmembers. SMS generally lasted 2-3 days in-flight with approximately 1/3 of crewmembers experiencing moderate to severe symptoms, and decreased incidence in repeat flyers. While SMS has proven difficult to predict from susceptibility to terrestrial analogs, symptoms were alleviated by medications, restriction of early activities, maintaining familiar orientation with respect to the visual environment and maintaining contact cues. Adaptive changes were also reflected by the oculomotor and perceptual disturbances experienced early inflight and by the perceptual and motor coordination problems experienced during re-entry and landing. According to crew self-reports, systematic head movements performed during reentry, as long as paced within one's threshold for motion tolerance, facilitated the early readaptation process. The Shuttle provided early postflight crew access to document the initial performance decrements and time course of recovery. These early postflight measurements were critical to inform the program of risks associated with extending the duration of Shuttle missions. Neurological postflight deficits were documented using a standardized subjective rating by flight surgeons. Computerized dynamic posturography was also implemented as a quantitative means of assessing sensorimotor function to support crew return-to-duty assessments. Towards the end of the Shuttle Program, more emphasis has been placed on mapping physiological changes to functional performance. Future commercial flights will benefit from pre-mission training including exposures to launch and entry G transitions and sensorimotor adaptability assessments. While SMS medication usage will continue to be refined, non-pharmacological countermeasures (e.g., sensory aids) will have both space and Earth-based applications. Early postflight field tests are recommended to provide the evidence base for best practices for future commercial flight programs. Learning Objective: Overview of the Space Shuttle Program regarding adaptive changes in sensorimotor function, including what was learned from research, what was implemented for medical operations, and what is recommended for commercial flights

    Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity

    Get PDF
    Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation

    Comparison of Postural Recovery Following Short and Long Duration Spaceflights

    Get PDF
    INTRODUCTION: Post-flight postural ataxia reflects adaptive changes to vestibulo-spinal reflexes and control strategies adopted for movement in weightlessness. Quantitative measures obtained during computerized dynamic posturography (CDP) from US and Russian programs provide insight into the effect of spaceflight duration in terms of both the initial decrements and recovery of postural stability. METHODS: CDP was obtained on 117 crewmembers following Shuttle flights lasting 4-17 days, and on 64 crewmembers following long-duration missions lasting 48-380 days. Although the number and timing of sessions varied, the goal was to characterize postural recovery pooling similar measures from different research and flight medicine programs. This report focuses on eyes closed, head erect conditions with either a fixed or sway-referenced base of support. A smaller subset of subjects repeated the sway-referenced condition while making pitch head movements (+/- 20deg at 0.33Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Fall probability was modeled using Bayesian statistical methods to estimate parameters of a logit function. RESULTS: The standard Romberg condition was the least sensitive. Longer duration flights led to larger decrements in stability with sway-reference support during the first 1-2 days, although the timecourse of recovery was similar across flight duration with head erect. Head movements led to increased incidence of falls during the first week, with a significantly longer recovery following long duration flights. CONCLUSIONS: The diagnostic assessment of postural instability, and differences in the timecourse of postural recovery between short and long flight durations, are more pronounced during unstable support conditions requiring active head movements

    Modification of Eccentric Gaze-Holding

    Get PDF
    Clear vision and accurate localization of objects in the environment are prerequisites for reliable performance of motor tasks. Space flight confronts the crewmember with a stimulus rearrangement that requires adaptation to function effectively with the new requirements of altered spatial orientation and motor coordination. Adaptation and motor learning driven by the effects of cerebellar disorders may share some of the same demands that face our astronauts. One measure of spatial localization shared by the astronauts and those suffering from cerebellar disorders that is easily quantified, and for which a neurobiological substrate has been identified, is the control of the angle of gaze (the "line of sight"). The disturbances of gaze control that have been documented to occur in astronauts and cosmonauts, both in-flight and postflight, can be directly related to changes in the extrinsic gravitational environment and intrinsic proprioceptive mechanisms thus, lending themselves to description by simple non-linear statistical models. Because of the necessity of developing robust normal response populations and normative populations against which abnormal responses can be evaluated, the basic models can be formulated using normal, non-astronaut test subjects and subsequently extended using centrifugation techniques to alter the gravitational and proprioceptive environment of these subjects. Further tests and extensions of the models can be made by studying abnormalities of gaze control in patients with cerebellar disease. A series of investigations were conducted in which a total of 62 subjects were tested to: (1) Define eccentric gaze-holding parameters in a normative population, and (2) explore the effects of linear acceleration on gaze-holding parameters. For these studies gaze-holding was evaluated with the subjects seated upright (the normative values), rolled 45 degrees to both the left and right, or pitched back 30 and 90 degrees. In a separate study the further effects of acceleration on gaze stability was examined during centrifugation (+2 G (sub x) and +2 G (sub z) using a total of 23 subjects. In all of our investigations eccentric gaze-holding was established by having the subjects acquire an eccentric target (+/-30 degrees horizontal, +/- 15 degrees vertical) that was flashed for 750 msec in an otherwise dark room. Subjects were instructed to hold gaze on the remembered position of the flashed target for 20 sec. Immediately following the 20 sec period, subjects were cued to return to the remembered center position and to hold gaze there for an additional 20 sec. Following this 20 sec period the center target was briefly flashed and the subject made any corrective eye movement back to the true center position. Conventionally, the ability to hold eccentric gaze is estimated by fitting the natural log of centripetal eye drifts by linear regression and calculating the time constant (G) of these slow phases of "gaze-evoked nystagmus". However, because our normative subjects sometimes showed essentially no drift (tau (sub c) = m), statistical estimation and inference on the effect of target direction was performed on values of the decay constant theta = 1/(tau (sub c)) which we found was well modeled by a gamma distribution. Subjects showed substantial variance of their eye drifts, which were centrifugal in approximately 20 % of cases, and > 40% for down gaze. Using the ensuing estimated gamma distributions, we were able to conclude that rightward and leftward gaze holding were not significantly different, but that upward gaze holding was significantly worse than downward (p<0.05). We also concluded that vertical gaze holding was significantly worse than horizontal (p<0.05). In the case of left and right roll, we found that both had a similar improvement to horizontal gaze holding (p<0.05), but didn't have a significant effect on vertical gaze holding. For pitch tilts, both tilt angles significantly decreased gaze-holding ility in all directions (p<0.05). Finally, we found that hyper-g centrifugation significantly decreased gaze holding ability in the vertical plane. The main findings of this study are as follows: (1) vertical gaze-holding is less stable than horizontal, (2) gaze-holding to upward targets is less stable than to downward targets, (3) tilt affects gaze holding, and (4) hyper-g affects gaze holding. This difference between horizontal and vertical gaze-holding may be ascribed to separate components of the velocity-to-position neural integrator for eye movements, and to differences in orbital mechanics. The differences between upward and downward gaze-holding may be ascribed to an inherent vertical imbalance in the vestibular system. Because whole body tilt and hyper-g affects gaze-holding, it is implied that the otolith organs have direct connections to the neural integrator and further studies of astronaut gaze-holding are warranted. Our statistical method for representing the range of normal eccentric gaze stability can be readily applied to normals who maybe exposed to environments which may modify the central integrator and require monitoring, and to evaluate patients with gaze-evoked nystagmus by comparing to the above established normative criteria

    Integrated Evaluation of Latent Viral Reactivation During Spaceflight

    No full text
    This application proposes a continuation of our current effort, which has provided the first demonstration of viral reactivation during space flight. We have used the herpesvirus EBV as a model for latent viral reactivation and have shown that increased amounts of EBV DNA were shed by astronauts during space flight. Analysis of the Antarctic space flight analog indicated that the frequency of viral shedding may also increase (along with the increased numbers of virus) during long periods of isolation. However, a number of critical questions remain before the findings may be considered a significant health risk during extended space flight. These include: Are other latent viruses (e.g., other herpesviruses and polyornaviruses) in addition to EBV also reactivated and shed more frequently and/or in higher numbers during space flight? Is the viral reactivation observed in space flight and ground-based analogs mediated through the hypothalamus-pituitary-adrenal (HPA) axis resulting in a decreased cell-mediated immune response? How does detection of viral DNA by PCR analysis correlate with infectious virus? How does the amount of virus found during flight compare with viral levels observed in acute/chronic viral illnesses and in control individuals? This expanded study will examine the phenomenon of viral reactivation from the initiating stress through the HPA axis with the accompanying suppression of the immune system resulting in viral reactivation. This information is essential to determine if latent viral reactivation among crewmembers represents a sufficient medical risk to space travel to require the development of suitable countermeasures
    corecore