2,871 research outputs found

    A new data analysis framework for the search of continuous gravitational wave signals

    Full text link
    Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the chances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.Comment: 21 pages, 8 figure

    An improved algorithm for narrow-band searches of continuous gravitational waves

    Full text link
    Continuous gravitational waves signals, emitted by asymmetric spinning neutron stars, are among the main targets of current detectors like Advanced LIGO and Virgo. In the case of sources, like pulsars, which rotational parameters are measured through electromagnetic observations, typical searches assume that the gravitational wave frequency is at a given known fixed ratio with respect to the star rotational frequency. For instance, for a neutron star rotating around one of its principal axis of inertia the gravitational signal frequency would be exactly two times the rotational frequency of the star. It is possible, however, that this assumption is wrong. This is why search algorithms able to take into account a possible small mismatch between the gravitational waves frequency and the frequency inferred from electromagnetic observations have been developed. In this paper we present an improved pipeline to perform such narrow-band searches for continuous gravitational waves from neutron stars, about three orders of magnitude faster than previous implementations. The algorithm that we have developed is based on the {\it 5-vectors} framework and is able to perform a fully coherent search over a frequency band of width O\mathcal{O}(Hertz) and for hundreds of spin-down values running a few hours on a standard workstation. This new algorithm opens the possibility of long coherence time searches for objects which rotational parameters are highly uncertain.Comment: 19 pages, 8 figures, 6 tables, submitted to CQ

    Romanesque and territory. The construction materials of Sardinian medieval churches: new approaches to the valorization, conservation and restoration

    Get PDF
    This paper is intended to illustrate a multidisciplinary research project devoted to the study of the constructive materials of the Romanesque churches in Sardinia during the “Giudicati” period (11th -13th centuries). The project focuses on the relationship between a selection of monuments and their territory, both from a historical-architectural perspective and from a more modern perspective addressing future restoration works. The methodologies of the traditional art-historical research (study of bibliographic, epigraphic and archival sources, formal reading of artifacts) are flanked by new technologies: digital surveys executed with a 3D laser-scanner, analyses of the materials (stones, mortars, bricks) with different instrumental methods: X-ray fluorescence (XRF) and inductively coupled mass spectrometry (ICP-MS) for chemical composition, X-ray diffractometer (XRD) to determine the alteration phases (e.g., soluble salts), optical microscopy and electronic (SEM) to study textures, mineral assemblages and microstructures, termogravimetric/differential scanning, calorimetric analysis (TG/DTA) for the composition of the binder mortars. This multidisciplinary approach allows the achieving of important results in an archaeometric context: 1) from a historical point of view, with the possible identification of ancient traffics, trade routes, sources of raw materials, construction phases, wall textures; 2) from a conservative point of view, by studying chemical and physical weathering processes of stone materials compatible for replacement in case of future restoration works. Sardinian Romanesque architectural heritage is particularly remarkable: about 200 churches of different types and sizes, with the almost exclusive use of cut stones. Bi- or poly-chromy, deriving from the use of different building materials, characterizes many of these monuments, becoming also a vehicle for political and cultural meanings. The paper will present some case studies aimed to illustrate the progress of the project and the results achieved

    Tomato ionomic approach for food fortification and safety.

    Get PDF
    Food fortification is an issue of paramount of importance for people living both in developed and in developing countries. Among substances listed as "nutriceuticals", essential minerals have been recognised for their involvement in several healthy issues, involving all ages. In this frame, food plants are playing a pivotal role since their capability to compartmentalise ions and proteinmetal complexes in edible organs. Conversely, the accumulation of high metal levels in those organs may lead to safety problems. In the recent years, thanks to the availability of new and improved analytical apparatus in both ionic and genomic/transcrittomics areas, it is became feasible to couple data coming from plant physiology and genetics. Ionomics is the discipline that studies the cross-analysis of both data sets. Our group, in the frame of GenoPom project granted by MiUR, is interested to study the ionomics of tomatoes cultivars derived by breeding programmes in which wild relatives have been used to transfer several useful traits, such as resistance to biotic or abiotic stresses, fruit composition and textiture, etc. The introgression of the wild genome into the cultivated one produces new gene combinations. They might lead to the expression of some traits, such as increased or reduced adsorption of some metals and their exclusion or loading into edible organs, thus strongly involving the nutritional food value. Our final goal is to put together data coming from ions homeostasis and gene expression analyses, thus obtaining an ionomic tomato map related to ions absorption, translocation and accumulation in various plant organs, fruits included. To follow our hypothesis, we are studying the ionome of Solanum lycopersicum cv. M82 along with 76 Introgression Lines (ILs) produced by interspecific crosses between this cultivar and the wild species S. pennellii. These ILs are homozygous for small portions of the wild species genome introgressed into the domesticated M82 one. They are used as a useful tool for mapping QTL associated with many traits of interest. It is worthy to note that, until now, little information is available on QTL for ions accumulation in tomato. Moreover, as our knowledge, effects of new gene combinations in introgressed lines on ions uptake related to food safety have not been extensively studied. In this presentation we show results coming from the ionome analysis, carried out on S . lycopersicum M82 and several ILs. Plants were grown in pots in a greenhouse and watered with deionised water Thirty day-old plants were left to grow for 15 days in the presence of non-toxic concentration of Cd, Pb, As, Cr and Zn given combined. Leaves of all plants were then harvested and stored at -80°C for ionome and gene expression analyses. Preliminary results of ionome analysis of S. lycopersicum M82 and several ILs, carried out using an ICP-MS, showed that traits correlated to toxic metals and micronutrients accumulation in apical leaves were significantly modified in response to specific genetic backgrounds. Those results are perhaps due to the introgression of traits linked to uptake, translocation and accumulation of useful and/or toxic metal into plant apical leaves and to interactions of the wild type introgressed genomic regions with the cultivated genome. Also, data are shown on the identification and isolation of Solanum gene sequences related to ions uptake, translocation and accumulation, useful for further real-time gene expression evaluation in both cultivated and ILs during the treatments with the above-mentioned metals

    A semi-coherent analysis method to search for continuous gravitational waves emitted by ultra-light boson clouds around spinning black holes

    Full text link
    As a consequence of superradiant instability induced in Kerr black holes, ultra-light boson clouds can be a source of persistent gravitational waves, potentially detectable by current and future gravitational-wave detectors. These signals have been predicted to be nearly monochromatic, with a small steady frequency increase (spin-up), but given the several assumptions and simplifications done at theoretical level, it is wise to consider, from the data analysis point of view, a broader class of gravitational signals in which the phase (or the frequency) slightly wander in time. Also other types of sources, e.g. neutron stars in which a torque balance equilibrium exists between matter accretion and emission of persistent gravitational waves, would fit in this category. In this paper we present a robust and computationally cheap analysis pipeline devoted to the search of such kind of signals. We provide a full characterization of the method, through both a theoretical sensitivity estimation and through the analysis of syntethic data in which simulated signals have been injected. The search setup for both all-sky searches and higher sensitivity directed searches is discussed.Comment: 13 pages, 13 figure

    Differential effects on membrane permeability and viability of human keratinocyte cells undergoing very low intensity megasonic fields

    Get PDF
    Among different therapeutic applications of Ultrasound (US), transient membrane sonoporation (SP) - a temporary, non-lethal porosity, mechanically induced in cell membranes through US exposure - represents a compelling opportunity towards an efficient and safe drug delivery. Nevertheless, progresses in this field have been limited by an insufficient understanding of the potential cytotoxic effects of US related to the failure of the cellular repair and to the possible activation of inflammatory pathway. In this framework we studied the in vitro effects of very low-intensity US on a human keratinocyte cell line, which represents an ideal model system of skin protective barrier cells which are the first to be involved during medical US treatments. Bioeffects linked to US application at 1 MHz varying the exposure parameters were investigated by fluorescence microscopy and fluorescence activated cell sorting. Our results indicate that keratinocytes undergoing low US doses can uptake drug model molecules with size and efficiency which depend on exposure parameters. According to sub-cavitation SP models, we have identified the range of doses triggering transient membrane SP, actually with negligible biological damage. By increasing US doses we observed a reduced cells viability and an inflammatory gene overexpression enlightening novel healthy relevant strategies

    Calculating Nonlocal Optical Properties of Structures with Arbitrary Shape

    Full text link
    In a recent Letter [Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this Article, we detail the full method, and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur.Comment: 30 pages, 12 figures, 1 tabl

    Ultrasound delivery of Surface Enhanced InfraRed Absorption active gold-nanoprobes into fibroblast cells: a biological study via Synchrotron-based InfraRed microanalysis at single cell level

    Get PDF
    Ultrasound (US) induced transient membrane permeabilisation has emerged as a hugely promising tool for the delivery of exogenous vectors through the cytoplasmic membrane, paving the way to the design of novel anticancer strategies by targeting functional nanomaterials to specific biological sites. An essential step towards this end is the detailed recognition of suitably marked nanoparticles in sonoporated cells and the investigation of the potential related biological effects. By taking advantage of Synchrotron Radiation fourier transform infrared micro-spectroscopy (SR-microftiR) in providing highly sensitive analysis at the single cell level, we studied the internalisation of a nanoprobe within fibroblasts (NIH-3T3) promoted by low-intensity US. To this aim we employed 20 nm gold nanoparticles conjugated with the IR marker 4-aminothiophenol. The significant Surface Enhanced Infrared Absorption provided by the nanoprobes, with an absorbance increase up to two orders of magnitude, allowed us to efficiently recognise their inclusion within cells. Notably, the selective and stable SR- microftiR detection from single cells that have internalised the nanoprobe exhibited clear changes in both shape and intensity of the spectral profile, highlighting the occurrence of biological effects. Flow cytometry, immunofluorescence and murine cytokinesis-block micronucleus assays confirmed the presence of slight but significant cytotoxic and genotoxic events associated with the US-nanoprobe combined treatments. our results can provide novel hints towards US and nanomedicine combined strategies for cell spectral imaging as well as drug delivery-based therapies
    corecore