156 research outputs found

    Hessian and concavity of mutual information, differential entropy, and entropy power in linear vector Gaussian channels

    Full text link
    Within the framework of linear vector Gaussian channels with arbitrary signaling, closed-form expressions for the Jacobian of the minimum mean square error and Fisher information matrices with respect to arbitrary parameters of the system are calculated in this paper. Capitalizing on prior research where the minimum mean square error and Fisher information matrices were linked to information-theoretic quantities through differentiation, closed-form expressions for the Hessian of the mutual information and the differential entropy are derived. These expressions are then used to assess the concavity properties of mutual information and differential entropy under different channel conditions and also to derive a multivariate version of the entropy power inequality due to Costa.Comment: 33 pages, 2 figures. A shorter version of this paper is to appear in IEEE Transactions on Information Theor

    The MIMO Iterative Waterfilling Algorithm

    Full text link
    This paper considers the non-cooperative maximization of mutual information in the vector Gaussian interference channel in a fully distributed fashion via game theory. This problem has been widely studied in a number of works during the past decade for frequency-selective channels, and recently for the more general MIMO case, for which the state-of-the art results are valid only for nonsingular square channel matrices. Surprisingly, these results do not hold true when the channel matrices are rectangular and/or rank deficient matrices. The goal of this paper is to provide a complete characterization of the MIMO game for arbitrary channel matrices, in terms of conditions guaranteeing both the uniqueness of the Nash equilibrium and the convergence of asynchronous distributed iterative waterfilling algorithms. Our analysis hinges on new technical intermediate results, such as a new expression for the MIMO waterfilling projection valid (also) for singular matrices, a mean-value theorem for complex matrix-valued functions, and a general contraction theorem for the multiuser MIMO watefilling mapping valid for arbitrary channel matrices. The quite surprising result is that uniqueness/convergence conditions in the case of tall (possibly singular) channel matrices are more restrictive than those required in the case of (full rank) fat channel matrices. We also propose a modified game and algorithm with milder conditions for the uniqueness of the equilibrium and convergence, and virtually the same performance (in terms of Nash equilibria) of the original game.Comment: IEEE Transactions on Signal Processing (accepted

    Performance analysis and optimal selection of large mean-variance portfolios under estimation risk

    Full text link
    We study the consistency of sample mean-variance portfolios of arbitrarily high dimension that are based on Bayesian or shrinkage estimation of the input parameters as well as weighted sampling. In an asymptotic setting where the number of assets remains comparable in magnitude to the sample size, we provide a characterization of the estimation risk by providing deterministic equivalents of the portfolio out-of-sample performance in terms of the underlying investment scenario. The previous estimates represent a means of quantifying the amount of risk underestimation and return overestimation of improved portfolio constructions beyond standard ones. Well-known for the latter, if not corrected, these deviations lead to inaccurate and overly optimistic Sharpe-based investment decisions. Our results are based on recent contributions in the field of random matrix theory. Along with the asymptotic analysis, the analytical framework allows us to find bias corrections improving on the achieved out-of-sample performance of typical portfolio constructions. Some numerical simulations validate our theoretical findings

    Optimal Linear Precoding Strategies for Wideband Non-Cooperative Systems based on Game Theory-Part II: Algorithms

    Full text link
    In this two-part paper, we address the problem of finding the optimal precoding/multiplexing scheme for a set of non-cooperative links sharing the same physical resources, e.g., time and bandwidth. We consider two alternative optimization problems: P.1) the maximization of mutual information on each link, given constraints on the transmit power and spectral mask; and P.2) the maximization of the transmission rate on each link, using finite order constellations, under the same constraints as in P.1, plus a constraint on the maximum average error probability on each link. Aiming at finding decentralized strategies, we adopted as optimality criterion the achievement of a Nash equilibrium and thus we formulated both problems P.1 and P.2 as strategic noncooperative (matrix-valued) games. In Part I of this two-part paper, after deriving the optimal structure of the linear transceivers for both games, we provided a unified set of sufficient conditions that guarantee the uniqueness of the Nash equilibrium. In this Part II, we focus on the achievement of the equilibrium and propose alternative distributed iterative algorithms that solve both games. Specifically, the new proposed algorithms are the following: 1) the sequential and simultaneous iterative waterfilling based algorithms, incorporating spectral mask constraints; 2) the sequential and simultaneous gradient projection based algorithms, establishing an interesting link with variational inequality problems. Our main contribution is to provide sufficient conditions for the global convergence of all the proposed algorithms which, although derived under stronger constraints, incorporating for example spectral mask constraints, have a broader validity than the convergence conditions known in the current literature for the sequential iterative waterfilling algorithm.Comment: Paper submitted to IEEE Transactions on Signal Processing, February 22, 2006. Revised March 26, 2007. Accepted June 5, 2007. To appear on IEEE Transactions on Signal Processing, 200

    Optimization Methods for Designing Sequences with Low Autocorrelation Sidelobes

    Full text link
    Unimodular sequences with low autocorrelations are desired in many applications, especially in the area of radar and code-division multiple access (CDMA). In this paper, we propose a new algorithm to design unimodular sequences with low integrated sidelobe level (ISL), which is a widely used measure of the goodness of a sequence's correlation property. The algorithm falls into the general framework of majorization-minimization (MM) algorithms and thus shares the monotonic property of such algorithms. In addition, the algorithm can be implemented via fast Fourier transform (FFT) operations and thus is computationally efficient. Furthermore, after some modifications the algorithm can be adapted to incorporate spectral constraints, which makes the design more flexible. Numerical experiments show that the proposed algorithms outperform existing algorithms in terms of both the quality of designed sequences and the computational complexity
    • …
    corecore