80 research outputs found

    Electrical Detection of Spin Accumulation at a Ferromagnet-Semiconductor Interface

    Full text link
    We show that the accumulation of spin-polarized electrons at a forward-biased Schottky tunnel barrier between Fe and n-GaAs can be detected electrically. The spin accumulation leads to an additional voltage drop across the barrier that is suppressed by a small transverse magnetic field, which depolarizes the spins in the semiconductor. The dependence of the electrical accumulation signal on magnetic field, bias current, and temperature is in good agreement with the predictions of a drift-diffusion model for spin-polarized transport.Comment: Submitted to Phys. Rev. Let

    Spin injection from perpendicular magnetized ferromagnetic δ\delta-MnGa into (Al,Ga)As heterostructures

    Full text link
    Electrical spin injection from ferromagnetic δ\delta-MnGa into an (Al,Ga)As p-i-n light emitting diode (LED) is demonstrated. The δ\delta-MnGa layers show strong perpendicular magnetocrystalline anisotropy, enabling detection of spin injection at remanence without an applied magnetic field. The bias and temperature dependence of the spin injection are found to be qualitatively similar to Fe-based spin LED devices. A Hanle effect is observed and demonstrates complete depolarization of spins in the semiconductor in a transverse magnetic field.Comment: 4 pages, 3 figure

    Spin injection from the Heusler alloy Co_2MnGe into Al_0.1Ga_0.9As/GaAs heterostructures

    Full text link
    Electrical spin injection from the Heusler alloy Co_2MnGe into a p-i-n Al_0.1Ga_0.9As/GaAs light emitting diode is demonstrated. A maximum steady-state spin polarization of approximately 13% at 2 K is measured in two types of heterostructures. The injected spin polarization at 2 K is calculated to be 27% based on a calibration of the spin detector using Hanle effect measurements. Although the dependence on electrical bias conditions is qualitatively similar to Fe-based spin injection devices of the same design, the spin polarization injected from Co_2MnGe decays more rapidly with increasing temperature.Comment: 8 pages, 4 figure

    Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

    Get PDF
    The prospect of coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. For instance, one route toward realizing topological matter is by coupling a 2D electron gas (2DEG) with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been hindered by interface disorder and unstable gating. Here, we report measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding multilayer devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunneling regime, overcoming the soft-gap problem in 2D superconductor-semiconductor hybrid systems. With the QPC in the open regime, we observe a first conductance plateau at 4e^2/h, as expected theoretically for a normal-QPC-superconductor structure. The realization of a hard-gap semiconductor-superconductor system that is amenable to top-down processing provides a means of fabricating scalable multicomponent hybrid systems for applications in low-dissipation electronics and topological quantum information.Comment: includes main text, supplementary information and code for simulations. Published versio

    Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb

    Full text link
    The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the Mn-based class of Heuslers and half-Heuslers that contains several conventional and half metallic ferromagnets, shows a peculiar stability of its magnetic order in high magnetic fields. Density functional based studies reveal an unusual nature of its unstable (and therefore unseen) paramagnetic state, which for one electron less (CuMnSn, for example) would be a zero gap semiconductor (accidentally so) between two sets of very narrow, topologically separate bands of Mn 3d character. The extremely flat Mn 3d bands result from the environment: Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below the Fermi level, and the other four tetrahedrally coordinated sites are empty, leaving chemically isolated Mn 3d states. The AFM phase can be pictured heuristically as a self-doped Cu1+^{1+}Mn2+^{2+}Sb3−^{3-} compensated semimetal with heavy mass electrons and light mass holes, with magnetic coupling proceeding through Kondo and/or antiKondo coupling separately through the two carrier types. The ratio of the linear specific heat coefficient and the calculated Fermi level density of states indicates a large mass enhancement m∗/m∼5m^*/m \sim 5, or larger if a correlated band structure is taken as the reference
    • …
    corecore