7 research outputs found

    Reasons for and Consequences of Low Energy Availability in Female and Male Athletes: Social Environment, Adaptations, and Prevention

    Get PDF
    Low energy availability (LEA) represents a state in which the body does not have enough energy left to support all physiological functions needed to maintain optimal health. When compared to the normal population, athletes are particularly at risk to experience LEA and the reasons for this are manifold. LEA may result from altered dietary behaviours that are caused by body dissatisfaction, the belief that a lower body weight will result in greater performance, or social pressure to look a certain way. Pressure can also be experienced from the coach, teammates, and in this day and age through social media platforms. While LEA has been extensively described in females and female athletes have started fighting against the pressure to be thin using their social media platforms, evidence shows that male athletes are at risk as well. Besides those obvious reasons for LEA, athletes engaging in sports with high energy expenditure (e.g. rowing or cycling) can unintentionally experience LEA; particularly, when the athletes— caloric intake is not matched with exercise intensity. Whether unintentional or not, LEA may have detrimental consequences on health and performance, because both short-term and long-term LEA induces a variety of maladaptations such as endocrine alterations, suppression of the reproductive axis, mental disorders, thyroid suppression, and altered metabolic responses. Therefore, the aim of this review is to increase the understanding of LEA, including the role of an athlete—s social environment and the performance effects related to LEA. © 2020, The Author(s)

    12-week combined strength and endurance exercise attenuates CD8+ T-cell differentiation and affects the kynurenine pathway in the elderly: a randomized controlled trial

    Get PDF
    Background: Age-related accumulation of highly differentiated CD8+ effector memory re-expressing CD45RA (EMRA) T-cells and disruption of the kynurenine (KYN) pathway are associated with chronic inflammation and the development of insulin resistance. In this study the aim was to investigate the effects of 12-week combined strength and endurance exercise on CD8+ T-cell differentiation and KYN pathway metabolites. Ninety-six elderly subjects (f/m, aged 50—70) were randomized to a control (CON) or exercise (EX) group. The EX group completed combined strength and endurance training twice weekly for one hour each time at an intensity of 60% of the one-repetition maximum for strength exercises and a perceived exertion of 15/20 for endurance exercises. The EX group was also randomly subdivided into two groups with or without a concomitant balanced diet intervention in order to examine additional effects besides exercise alone. Before and after the intervention phase, the proportions of CD8+ T-cell subsets and levels of KYN pathway metabolites in peripheral blood were determined. Results: The CD8+ EMRA T-cell subsets increased in the CON group but remained almost unchanged in the EX group (p =.02). Plasma levels of kynurenic acid (KA) increased in the EX group and decreased in the CON group (p =.03). Concomitant nutritional intervention resulted in lower levels of quinolinic acid (QA) compared with exercise alone (p =.03). Overall, there was a slight increase in the QA/KA ratio in the CON group, whereas it decreased in the EX group (p >.05). Conclusions: Combined strength and endurance training seems to be a suitable approach to attenuate CD8+ T-cell differentiation in the elderly and to redirect the KYN pathway towards KA. The clinical relevance of these effects needs further investigation

    Reliability and suitability of physiological exercise response and recovery markers

    Get PDF
    There is currently insufficient evidence about the reliable quantification of exercise load and athlete’s recovery management for monitoring training processes. Therefore, this test–retest study investigated the reliability of various subjective, muscle force, and blood-based parameters in order to evaluate their suitability for monitoring exercise and recovery cycles. 62 subjects completed two identical 60-min continuous endurance exercise bouts intermitted by a four-week recovery period. Before, immediately after, three, and 24 h after each exercise bout, analysis of parameters were performed. Significant changes over time were found for rating of perceived exertion (RPE), multidimensional mood state questionnaire (MDMQ), maximum voluntary contraction parameters (MVCs), and blood-based biomarkers (p 0.90). A good reliability was found for thiobarbituric acid reactive substances (TBARS) (ICC = 0.79) and haematological markers (ICC = 0.75–0.86). For RPE, MDMQ, interleukin (IL-) 1RA, IL-6, IL-8, IL-15, cortisol, lactate dehydrogenase (LDH), creatine kinase (CK) only moderate reliability was found (ICC < 0.75). Significant associations for IL1-RA and CK to MVC were found. The excellent to moderate reliability of TBARS, LDH, IL-1RA, six measured haematological markers, MVCs and MDMQ implicate their suitability as physiological exercise response and recovery markers for monitoring athletes’ load management. © 2020, The Author(s)

    Abdominal obesity‐related disturbance of insulin sensitivity is associated with cd8+ emra cells in the elderly

    Get PDF
    Aging and overweight increase the risk of developing type 2 diabetes mellitus. In this cross‐sectional study, we aimed to investigate the potential mediating role of T‐EMRA cells and inflammatory markers in the development of a decreased insulin sensitivity. A total of 134 healthy older volunteers were recruited (age 59.2 (SD 5.6) years). T cell subpopulations were analyzed by flow cytometry. Furthermore, body composition, HOMA‐IR, plasma tryptophan (Trp) metabolites, as well as cytokines and adipokines were determined. Using subgroup and covariance analyses, the influence of BMI on the parameters was evaluated. Moreover, correlation, multiple regression, and mediation analyses were performed. In the subgroup of participants with obesity, an increased proportion of CD8+EMRA cells and elevated concentrations of plasma kynurenine (KYN) were found compared to the lower‐weight subgroups. Linear regression analysis revealed that an elevated HOMA‐IR could be predicted by a higher proportion of CD8+EMRA cells and KYN levels. A mediation analysis showed a robust indirect effect of the Waist‐to‐hip ratio on HOMA‐IR mediated by CD8+EMRA cells. Thus, the deleterious effects of abdominal obesity on glucose metabolism might be mediated by CD8+EMRA cells in the elderly. Longitudinal studies should validate this assumption and analyze the suitability of CD8+EMRA cells as early predictors of incipient prediabetes. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    The Impact of Exercise Serum on Selected Parameters of CD4+ T Cell Metabolism

    No full text
    CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-Îł receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies

    Abdominal Obesity-Related Disturbance of Insulin Sensitivity Is Associated with CD8+ EMRA Cells in the Elderly

    No full text
    Aging and overweight increase the risk of developing type 2 diabetes mellitus. In this cross-sectional study, we aimed to investigate the potential mediating role of T-EMRA cells and inflammatory markers in the development of a decreased insulin sensitivity. A total of 134 healthy older volunteers were recruited (age 59.2 (SD 5.6) years). T cell subpopulations were analyzed by flow cytometry. Furthermore, body composition, HOMA-IR, plasma tryptophan (Trp) metabolites, as well as cytokines and adipokines were determined. Using subgroup and covariance analyses, the influence of BMI on the parameters was evaluated. Moreover, correlation, multiple regression, and mediation analyses were performed. In the subgroup of participants with obesity, an increased proportion of CD8+EMRA cells and elevated concentrations of plasma kynurenine (KYN) were found compared to the lower-weight subgroups. Linear regression analysis revealed that an elevated HOMA-IR could be predicted by a higher proportion of CD8+EMRA cells and KYN levels. A mediation analysis showed a robust indirect effect of the Waist-to-hip ratio on HOMA-IR mediated by CD8+EMRA cells. Thus, the deleterious effects of abdominal obesity on glucose metabolism might be mediated by CD8+EMRA cells in the elderly. Longitudinal studies should validate this assumption and analyze the suitability of CD8+EMRA cells as early predictors of incipient prediabetes
    corecore