298 research outputs found

    Design of a Lightweight and Deployable Soft Robotic Arm

    Get PDF
    Soft robotics represents a rising trend in recent years, due to the ability to work in unstructured environments or in strict contact with humans. Introducing soft parts, robots can adapt to various contexts overcoming limits relative to the rigid structure of traditional ones. Main issues of soft robotics systems concern the relatively low force exertion and control complexity. Moreover, several fields of application, as space industry, need to develop novel lightweight and deployable robotic systems, that can be stored into a relatively small volume and deployed when required. In this paper, POPUP robot is introduced: a soft manipulator having inflatable links and rigid joints. Its hybrid structure aims to match the advantages of rigid robots and the useful properties of having a lightweight and deployable parts, ensuring simple control, low energy consumption and low compressed gas requirement. The first robot prototype and the system architecture are described highlighting design criteria and effect of internal pressure on the performances. A pseudo-rigid body model is used to describe the behavior of inflatable links looking forward to control design. Finally, the model is extended to the whole robot: multi-body simulations are performed to highlight the importance of suitable sensor equipment for control development, proposing a visual servoing solution

    Anterior-to-Posterior Migration of a Lumbar Disc Sequestration. Surgical Remarks and Technical Notes about a Tailored Microsurgical Discectomy

    Get PDF
    Extrusion of disc material within the spinal canal complicates up to 28.6% of lumbar disc herniations. Due to the anatomical "corridors" created by the anterior midline septum and lateral membranes, relocation occurs with an anterior and anterolateral axial topography. Posterior migration is an extremely rare condition and anterior-to-posterior circumferential migration is an even rarer condition. Its radiological feature can be enigmatic and since, in more than 50% of cases, clinical onset is a hyperacute cauda equina syndrome, it may imply a difficult surgical decision in emergency settings. Surgery is the gold standard but when dealing with such huge sequestrations, standard microdiscectomy must be properly modified in order to minimize the risk of surgical trauma or traction on the nerve roots

    Preliminary Analysis of a Lightweight and Deployable Soft Robot for Space Applications

    Get PDF
    The rising interest in soft robotics, combined to the increasing applications in the space industry, leads to the development of novel lightweight and deployable robotic systems, that could be easily contained in a relatively small package to be deployed when required. The main challenges for soft robotic systems are the low force exertion and the control complexity. In this manuscript, a soft manipulator concept, having inflatable links, is introduced to face these issues. A prototype of the inflatable link is manufactured and statically characterized using a pseudo-rigid body model on varying inflation pressure. Moreover, the full robot model and algorithms for the load and pose estimation are presented. Finally, a control strategy, using inverse kinematics and an elastostatic approach, is developed. Experimental results provide input data for the control algorithm, and its validity domain is discussed on the basis of a simulation model. This preliminary analysis puts the basis of future advancements in building the robot prototype and developing dynamic models and robust control

    Grasping Mechanism Concepts Oriented to Debris for Removal Applications

    Get PDF
    Space debris regulation and reduction is an increasingly relevant theme. Several initiatives in the aerospace field on debris removal are pursued by space agencies. In this context, an analysis has been conducted on diverse mechanisms for spacecraft coupling in Low Earth Orbit (LEO) with a robotic arm. Four grasping mechanical concepts for space debris removal applications have been proposed in respect of restrictive requirements. Two concepts are based on probe and drogue mating systems and the other two on finger-like grasping systems. The paper describes the preliminary design and the operation of the proposed mechanisms. In addition, it lays the foundation for a trade-off procedure in order to evaluate advantages and drawbacks for each concept

    Securing PIN-based Authentication in Smartwatches With just Two Gestures

    Get PDF
    Smartwatches are becoming increasingly ubiquitous as they offer new capabilities to develop sophisticated applications that make daily life easier and more convenient for consumers. The services provided include applications for mobile payment, ticketing, identification, access control, etc. While this makes modern smartwatches very powerful devices, it also makes them very attractive targets for attackers. Indeed, PINs and Pattern Lock have been widely used in smartwatches for user authentication. However, such authentication methods are not robust against various forms of cybersecurity attacks, such as side channel, phishing, smudge, shoulder surfing, and video recording attacks. Moreover, the recent adoption of hardware-based solutions, like the Trusted Execution Environment (TEE), can mitigate only partially such problems. Thus, the user’s security and privacy are at risk without a strong authentication scheme in place. In this work, we propose 2GesturePIN, a new authentication framework that allows users to authenticate securely to their smartwatches and related sensitive services through solely two gestures. 2GesturePIN leverages the rotating bezel or crown, which are the most intuitive ways to interact with a smartwatch, as a dedicated hardware. 2GesturePIN improves the resilience of the regular PIN authentication method against state-of-the-art cybersecurity attacks while maintaining a high level of usability

    How SARS-Cov-2 can involve the central nervous system. A systematic analysis of literature of the department of human neurosciences of Sapienza University, Italy

    Get PDF
    Italy is currently one of the countries most affected by the global emergency of COVID-19, a lethal disease of a novel coronavirus renamed as SARS-CoV-2. SARS-CoV-2 shares highly homological sequence with the most studied SARS-CoV, and causes acute, highly deadly pneumonia (COVID-19) with clinical symptoms similar to those reported for SARS-CoV and MERS-CoV. Increasing evidence shows that these coronaviruses are not always confined to the respiratory tract and that they may also neuroinvasive and neurotropic, with potential neuropathological consequences in vulnerable populations. The aim of this study is to predict a likely CNS involvement by SARS-CoV-2 by studying the pathogenic mechanisms in common with other better known and studied coronaviruses with which it shares the same characteristics. Understanding the mechanisms of neuroinvasion and interaction of HCoV (including SARS-Cov-2) with the CNS is essential to evaluate potentially pathological short- and long-term consequences. Autopsies of the COVID-19 patients, detailed neurological investigation, and attempts to isolate SARS-CoV-2 from the endothelium of cerebral microcirculation, cerebrospinal fluid, glial cells, and neuronal tissue can clarify the role played by COVID-19 in CNS-involvement and in the ongoing mortalities as has been in the recent outbreak

    Human Arm Motion Tracking by Kinect Sensor Using Kalman Filter for Collaborative Robotics

    Get PDF
    The rising interest in collaborative robotics leads to research solutions in order to increase robot interaction with the environment. The development of methods that permit robots to recognize and track human motion is relevant for safety and collaboration matters. A large quantity of data can be measured in real time by Microsoft Kinect®, a well-known low-cost depth sensor, able to recognize human presence and to provide postural information by extrapolating a skeleton. However, the Kinect sensor tracks motion with relatively low accuracy and jerky behavior. For this reason, the effective use in industrial applications in which the measurement of arm velocity is required can be unsuitable. The present work proposes a filtering method that allows the measurement of more accurate velocity values of human arm, based on row data provided by the Kinect sensor. The estimation of arm motion is achieved by a Kalman filter based on a kinematic model and by the imposition of fixed lengths for the skeleton links detected by the sensor. The development of the method is supported by experimental tests. The achieved results suggest the practical applicability of the developed algorithms

    A deployable and inflatable robotic arm concept for aerospace applications

    Get PDF
    The interest in soft systems for space missions represents a growing trend in recent years. The development of inflatable robots, combined with the improvement of deployment mechanisms, allows to build novel lightweight and deployable robotic manipulators. In several space applications, the use of soft robots could minimize bulk and mass, reducing space mission costs. The main challenges in soft robotics are the control of the system and the exertion of high forces. In this manuscript, the concept of an inflatable manipulator with two inflatable links and three degrees of freedom is proposed. After a review about the possible materials to be used for the inflatable parts, the robot mechanical structure, the deploying strategy and the pneumatic line are presented. Then, an elastostatic approach is proposed to model the robot with the aim of developing its control. The last section shows preliminary experimental tests performed on the link prototype with the purpose to evaluate a static characterization in relation to the supplied pressure. Results suggest the validity of the adopted approach to model the system and clarify the pressure influence about the system performances. The study puts the basis for the development of the first prototype of the robotic system

    Volumetric expression of palynological spectra for nutritional studies

    Get PDF
    When pollen is studied from nutritional point of view, it would be desirable to correct its raw palynological spectrum in order to express the mass contribution of each pollen type. Different approaches applied for this correction through volumetric coefficients are discussed, and a simple and reliable procedure is proposed
    • …
    corecore