6 research outputs found

    On the Capabilities of the Italian Airborne FMCW AXIS InSAR System

    Get PDF
    Airborne Synthetic Aperture Radar (SAR) systems are gaining increasing interest within the remote sensing community due to their operational flexibility and observation capabilities. Among these systems, those exploiting the Frequency-Modulated Continuous-Wave (FMCW) technology are compact, lightweight, and comparatively low cost. For these reasons, they are becoming very attractive, since they can be easily mounted onboard ever-smaller and highly flexible aerial platforms, like helicopters or unmanned aerial vehicles (UAVs). In this work, we present the imaging and topographic capabilities of a novel Italian airborne SAR system developed in the frame of cooperation between a public research institute (IREA-CNR) and a private company (Elettra Microwave S.r.l.). The system, which is named AXIS (standing for Airborne X-band Interferometric SAR), is based on FMCW technology and is equipped with a single-pass interferometric layout. In the work we first provide a description of the AXIS system. Then, we describe the acquisition campaign carried out in April 2018, just after the system completion. Finally, we perform an analysis of the radar data acquired during the campaign, by presenting a quantitative assessment of the quality of the SLC (Single Look Complex) SAR images and the interferometric products achievable through the system. The overall analysis aims at providing first reference values for future research and operational activities that will be conducted with this sensor

    MIPS: a new airborne Multiband Interferometric and Polarimetric SAR system for the Italian territory monitoring

    No full text
    Synthetic Aperture Radar (SAR) systems represent nowadays standard tools for the high resolution Earth observation in all weather conditions [1]. Indeed, thanks to well established techniques based on SAR data, such as SAR interferometry (InSAR), Differential InSAR (DInSAR) and SAR polarimetry (PolSAR), it is possible to generate addedvalue products, as for instance Digital Elevation Models, ground deformation maps and time series, soil moisture maps, and exploit these systems for the remote monitoring of both natural and anthropic phenomena [2] - [5]. In addition, recent advancements in radar, navigation and aeronautical technologies allow us to benefit of lightweight and compact SAR sensors that can be mounted onboard highly flexible aerial platforms [6] - [7]. These aspects offer the opportunity to design novel observation configurations and to explore innovative estimation strategies based, for instance, on data provided by multi-frequency, multi-polarization, multi-antenna or even multi-platform SAR systems. This work is aimed at showing the imaging capabilities of the new Italian airborne SAR system named MIPS (Multiband Interferometric and Polarimetric SAR). The system is based on the Frequency Modulated Continuous Wave (FMCW) technology and is able to operate at both L- and X- band. In particular, the L-band sensor is able to acquire fullypolarized radar data, while the X-band sensor exhibits single-pass interferometric SAR capabilities. A detailed description of both the MIPS system and its imaging capabilities will be provided at the conference time, with a special emphasis given to the activities carried out within the ASI-funded DInSAR-3M project

    Multimode/Multifrequency Low Frequency Airborne Radar Design

    Get PDF
    This work deals with the design of multimode/multifrequency airborne radar suitable for imaging and subsurface sounding. The system operates at relatively low frequencies in the band ranging from VHF to UHF. It is able to work in two different modalities: (i) nadir-looking sounder in the VHF band (163 MHz) and (ii) side-looking imager (SAR) in the UHF band with two channels at 450 MHz and 860 MHz. The radar has been completely designed by CO.Ri.S.T.A. for what concerns the RF and the electronic aspect, and by the University of Calabria for what concerns the design, realization, and test of SAR antennas. The radar has been installed on a civil helicopter and its operation has been validated in flight in both sounder and imager modality. Preliminary surveys have been carried out over different areas of Campania region, South Italy

    Interferometric experiments with the first Italian airborne P-band radar

    No full text
    This work aims to describe the characteristics and the status of development, including the results of a first preliminary testing campaign, of a low frequency airborne imaging radar developed in Italy for the Italian Space Agency

    The ASI Integrated Sounder-SAR System Operating in the UHF-VHF Bands: First Results of the 2018 Helicopter-Borne Morocco Desert Campaign

    No full text
    This work is aimed at showing the present capabilities and future potentialities of an imaging radar system that can be mounted onboard flexible aerial platforms, such as helicopters or small airplanes, and may operate in the UHF and VHF frequency bands as Sounder and as Synthetic Aperture Radar (SAR). More specifically, the Sounder operates at 165 MHz, whereas the SAR may operate either at 450 MHz or at 860 MHz. In the work, we present the first results relevant to a set of Sounder and SAR data collected by the radar during a helicopter-borne campaign conducted in 2018 over a desert area in Erfoud, Morocco, just after the conclusion of a system upgrading procedure. In particular, a first analysis of the focusing capabilities of the Sounder mode and of the polarimetric and interferometric capabilities of the SAR mode is conducted. The overall system, originally developed by CO.RI.S.T.A. according to a ASI funding set up in 2010, has been upgraded in the frame of a contract signed in 2015 between ASI and different private and public Italian Research Institutes and Universities, namely CO.RI.S.T.A., IREA-CNR, Politecnico di Milano and University of Trento
    corecore