11 research outputs found

    Do on-farm natural, restored, managed and constructed wetlands mitigate agricultural pollution in Great Britain and Ireland?: a systematic review

    Get PDF
    Wetlands in agricultural landscapes offer a number of benefits to the landscape function in which they are set, reducing nutrient runoff, providing additional habitat mosaics and offering various ecosystem services. They require careful planning and maintenance in order to perform their optimum design function over a prolonged period of time. They should be treated as functional units of farm infrastructure rather than fit-and-forget systems. A high priority topic within the Department for Environment, Food and Rural Affairs (DEFRA) water quality programme is the mitigation of pollution from agriculture. This programme was set up to meet the requirements of the European Water Framework Directive (WFD) EU (2000). Nutrient loss from agricultural land has been suggested as a major cause of elevated nutrient concentrations in surface waters in the UK. Nitrogen (N) and phosphorus (P) are of particular concern as an excess of either nutrient can lead to eutrophication of freshwater systems and coastal waters. Agriculture has also been identified as a significant source of suspended sediment (SS) concentrations in UK rivers and agriculturally derived sediment has been identified as a source of increased bed-sediment P concentrations in rivers. High bed sediments loads have other negative impacts, such as clogging river gravels reducing fish spawning. There is considerable evidence in the published and grey literature that wetlands have the ability to remove nutrients and sediment and thus reduce the load on receiving waters. Wetlands have also been reported to perform other ecosystem services, such as reducing floods, supporting biodiversity and sequestering carbon. A policy to promote the conservation, management, restoration or construction of wetlands could help to mitigate the impacts of N, P and SS from agriculture delivering requirements of WFD through Catchment Sensitive Farming following an Ecosystem Approach and Catchment Based Approach promoted by Defra. It could also meet other commitments such as implementing the Ramsar and Biodiversity Conventions to which the UK is a signatory. However, the term wetlands covers a wide range of habitat types and it is important that policy makers are provided with accurate, robust and independently reviewed information on the degree to which different types of wetland perform these services under different circumstances, so that policy can most best targeted. This systematic review assesses the available evidence on the performance of various wetland types on farms to reduce nutrient input and suspended sediments to receiving waters. It provides a defensible evidence base on which to base policy. The studies reviewed cover different input loads and the analysis compares performance of these wetland systems in respect of % reduction efficiency. In England and Wales, Defra, working closely with the Environment Agency and Natural England, has commissioned this systematic review on how effective, and what influences the effectiveness of wetlands at mitigating N, P and SS inputs from agriculture to receiving freshwater in the United Kingdom and Ireland

    How effective are reedbeds, ponds, restored and constructed wetlands at retaining nitrogen, phosphorus and suspended sediment from agricultural pollution in England?

    Get PDF
    A high priority topic within the Department for Environment, Food and Rural Affairs (DEFRA) water quality programme is the mitigation of diffuse rural pollution from agriculture. Wetlands are often cited as being effective at reducing nutrient and sediment loadings to receiving waters. However, the research in this area is inconsistent, and whilst most studies have shown that both natural and constructed wetlands retain nutrients and sediments, others have shown that they have little effect, or even increase nutrient and sediment loads to receiving water bodies. DEFRA has commissioned a systematic review on the use of wetlands to mitigate N, P and SS inputs from agriculture to receiving freshwater in England. The review will encompass a comprehensive literature search on all available material on the subject, both published and unpublished within the British Isles. Specific inclusion criteria will be adhered to and a formal assessment of the quality and reliability of the studies will be undertaken. The data will then be extracted and a data synthesis undertaken. The review will inform an evidence-based policy that can be implemented by stakeholders

    Phosphorus release from sediments in a treatment wetland: Contrast between DET and EPC0 methodologies

    No full text
    Wetlands are capable of reducing nutrient loadings to receiving water bodies, and hence many artificial wetlands have been constructed for wastewater nutrient removal. In this study, diffusive equilibrium in thin films (DETs) and equilibrium phosphorus concentration (EPC0) analysis were used to examine the role of sediment as a nutrient source or sink in a constructed treatment wetland in summer. The effect of dredging on sediment-water nutrient exchange was also studied. Soluble reactive phosphorus (SRP), ammonium (NH4+) and sulphate (SO42−) concentration profiles were measured by DET across the sediment-water interface (SWI) in both a settling pond and iris reed bed within the wetland. The SRP concentrations in the sediment pore-waters of the settling pond were extremely high (up to 29,500 μg l−1) near the SWI. This is over an order of magnitude higher than the levels found in the water column, which in turn are over an order of magnitude higher than environmental levels proposed to limit eutrophication in rivers. The profiles demonstrated an average net release of SRP and NH4+ from the settling pond sediment to the overlying water of 58 mg m−2 d−1 (±32 mg m−2 d−1 (1 sd)) and 16 mg m−2 d−1 (±25 mg m−2 d−1 (1 sd)), respectively. The DET SO42− concentration profiles revealed that the sediment was anoxic within 2 cm of the SWI. Dredging of the reed bed made no significant difference to the P release characteristics across the SWI. The EPC0s were much lower than the SRP concentration of the overlying water, indicating that the sediment had the potential to act as a phosphate sink. The apparent contradiction of the DET and EPC0 results is attributed to the fact that DET measurements are made in situ, where as EPC0 measurements are ex situ. These results show that substantial releases of P can occur from wetland sediments, and also highlight the need for caution when interpreting ex situ EPC0 analytical results

    Internal loading of phosphorus in a sedimentation pond of a treatment wetland: Effect of a phytoplankton crash

    No full text
    Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH4+) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment–water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH4+ in March, but became subject to a net internal loading of TP, SRP and NH4+ in May, with SRP concentrations increasing by up to 41 μM (1300 μl− 1). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: − 8.2 μmol m− 2 day− 1) to a net source of SRP in June (average diffusive flux: + 1324 μmol m− 2 day− 1). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7 mol-P day− 1 were removed by photosynthesis and 23 mol-P day− 1 were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new ponds designed to treat nutrient waste

    High-frequency phosphorus monitoring of the River Kennet, UK: are ecological problems due to intermittent sewage treatment works failures?

    Get PDF
    The River Kennet in southern England has exhibited excessive benthic algal growth and associated ecological problems, such as loss of macrophytes and invertebrates, since the 1980s. These ecological problems were attributed to regular peaks in phosphorus concentration, which were widely attributed to intermittent failures of the Marlborough sewage treatment works (STW). This study deployed highfrequency phosphorus auto-analysers to monitor the total reactive phosphorus (TRP) concentrations of Marlborough STW final effluent and the downstream River Kennet at hourly and 30 minute resolution respectively, between 2008 and 2009. This monitoring confirmed that the Marlborough STW was operating well within its 1000 mg l-�1 annual mean total phosphorus consent limit, with mean total P and soluble reactive P concentrations of 675 and 345 mg l-�1 respectively. There were two occasions where effluent TRP concentration exceeded 1000 mg l-�1, and only one of these resulted in a peak in TRP concentration of over 100 mg l-�1 in the River Kennet at Mildenhall. The other nine peaks of over 100 mg l-�1 in the River Kennet during the monitoring period were associated with storm events, indicating that diffuse-source inputs and remobilisation of stored within-channel phosphorus were the cause of the peaks in river concentration, rather than Marlborough STW. The value of high-frequency environmental monitoring and the problems associated with using nutrient auto-analysers in the field are discussed. Seasonal phosphorus consents for STWs could provide a useful and cost effective means to improve both water quality and river ecology in the upper River Kennet
    corecore