11 research outputs found
Do on-farm natural, restored, managed and constructed wetlands mitigate agricultural pollution in Great Britain and Ireland?: a systematic review
Wetlands in agricultural landscapes offer a number of benefits to the landscape function in which they are set, reducing nutrient runoff, providing additional habitat mosaics and offering various ecosystem services. They require careful planning and maintenance in order to perform their optimum design function over a prolonged period of time. They should be treated as functional units of farm infrastructure rather than fit-and-forget systems.
A high priority topic within the Department for Environment, Food and Rural Affairs (DEFRA) water quality programme is the mitigation of pollution from agriculture. This programme was set up to meet the requirements of the European Water Framework Directive (WFD) EU (2000). Nutrient loss from agricultural land has been suggested as a major cause of elevated nutrient concentrations in surface waters in the UK. Nitrogen (N) and phosphorus (P) are of particular concern as an excess of either nutrient can lead to eutrophication of freshwater systems and coastal waters. Agriculture has also been identified as a significant source of suspended sediment (SS) concentrations in UK rivers and agriculturally derived sediment has been identified as a source of increased bed-sediment P concentrations in rivers. High bed sediments loads have other negative impacts, such as clogging river gravels reducing fish spawning.
There is considerable evidence in the published and grey literature that wetlands have the ability to remove nutrients and sediment and thus reduce the load on receiving waters. Wetlands have also been reported to perform other ecosystem services, such as reducing floods, supporting biodiversity and sequestering carbon. A policy to promote the conservation, management, restoration or construction of wetlands could help to mitigate the impacts of N, P and SS from agriculture delivering requirements of WFD through Catchment Sensitive Farming following an Ecosystem Approach and Catchment Based Approach promoted by Defra. It could also meet other commitments such as implementing the Ramsar and Biodiversity Conventions to which the UK is a signatory. However, the term wetlands covers a wide range of habitat types and it is important that policy makers are provided with accurate, robust and independently reviewed information on the degree to which different types of wetland perform these services under different circumstances, so that policy can most best targeted. This systematic review assesses the available evidence on the performance of various wetland types on farms to reduce nutrient input and suspended sediments to receiving waters. It provides a defensible evidence base on which to base policy. The studies reviewed cover different input loads and the analysis compares performance of these wetland systems in respect of % reduction efficiency. In England and Wales, Defra, working closely with the Environment Agency and Natural England, has commissioned this systematic review on how effective, and what influences the effectiveness of wetlands at mitigating N, P and SS inputs from agriculture to receiving freshwater in the United Kingdom and Ireland
Recommended from our members
High-frequency water quality monitoring in an urban catchment: hydrochemical dynamics, primary production and implications for the Water Framework Directive
This paper describes the hydrochemistry of a lowland, urbanised river-system, The Cut in England, using in situ sub-daily sampling. The Cut receives effluent discharges from four major sewage treatment works serving around 190,000 people. These discharges consist largely of treated water, originally abstracted from the River Thames and returned via the water supply network, substantially increasing the natural flow. The hourly water quality data were supplemented by weekly manual sampling with laboratory analysis to check the hourly data and measure further determinands. Mean phosphorus and nitrate concentrations were very high, breaching standards set by EU legislation. Though 56% of the catchment area is agricultural, the hydrochemical dynamics were significantly impacted by effluent discharges which accounted for approximately 50% of the annual P catchment input loads and, on average, 59% of river flow at the monitoring point. Diurnal dissolved oxygen data demonstrated high in-stream productivity. From a comparison of high frequency and conventional monitoring data, it is inferred that much of the primary production was dominated by benthic algae, largely diatoms. Despite the high productivity and nutrient concentrations, the river water did not become anoxic and major phytoplankton blooms were not observed. The strong diurnal and annual variation observed showed that assessments of water quality made under the Water Framework Directive (WFD) are sensitive to the time and season of sampling. It is recommended that specific sampling time windows be specified for each determinand, and that WFD targets should be applied in combination to help identify periods of greatest ecological risk. This article is protected by copyright. All rights reserved
How effective are reedbeds, ponds, restored and constructed wetlands at retaining nitrogen, phosphorus and suspended sediment from agricultural pollution in England?
A high priority topic within the Department for Environment, Food and Rural Affairs (DEFRA) water quality programme is the mitigation of diffuse rural pollution from agriculture. Wetlands are often cited as being effective at reducing nutrient and sediment loadings to receiving waters. However, the research in this area is inconsistent, and whilst most studies have shown that both natural and constructed wetlands retain nutrients and sediments, others have shown that they have little effect, or even increase nutrient and sediment loads to receiving water bodies. DEFRA has commissioned a systematic review on the use of wetlands to mitigate N, P and SS inputs from agriculture to receiving freshwater in England. The review will encompass a comprehensive literature search on all available material on the subject, both published and unpublished within the British Isles. Specific inclusion criteria will be adhered to and a formal assessment of the quality and reliability of the studies will be undertaken. The data will then be extracted and a data synthesis undertaken. The review will inform an evidence-based policy that can be implemented by stakeholders
Phosphorus release from sediments in a treatment wetland: Contrast between DET and EPC0 methodologies
Wetlands are capable of reducing nutrient loadings to receiving water bodies, and hence many artificial wetlands have been constructed for wastewater nutrient removal. In this study, diffusive equilibrium in thin films (DETs) and equilibrium phosphorus concentration (EPC0) analysis were used to examine the role of sediment as a nutrient source or sink in a constructed treatment wetland in summer. The effect of dredging on sediment-water nutrient exchange was also studied. Soluble reactive phosphorus (SRP), ammonium (NH4+) and sulphate (SO42−) concentration profiles were measured by DET across the sediment-water interface (SWI) in both a settling pond and iris reed bed within the wetland. The SRP concentrations in the sediment pore-waters of the settling pond were extremely high (up to 29,500 μg l−1) near the SWI. This is over an order of magnitude higher than the levels found in the water column, which in turn are over an order of magnitude higher than environmental levels proposed to limit eutrophication in rivers. The profiles demonstrated an average net release of SRP and NH4+ from the settling pond sediment to the overlying water of 58 mg m−2 d−1 (±32 mg m−2 d−1 (1 sd)) and 16 mg m−2 d−1 (±25 mg m−2 d−1 (1 sd)), respectively. The DET SO42− concentration profiles revealed that the sediment was anoxic within 2 cm of the SWI. Dredging of the reed bed made no significant difference to the P release characteristics across the SWI. The EPC0s were much lower than the SRP concentration of the overlying water, indicating that the sediment had the potential to act as a phosphate sink. The apparent contradiction of the DET and EPC0 results is attributed to the fact that DET measurements are made in situ, where as EPC0 measurements are ex situ. These results show that substantial releases of P can occur from wetland sediments, and also highlight the need for caution when interpreting ex situ EPC0 analytical results
Recommended from our members
Phosphorus dynamics and productivity in sewage-impacted lowland chalk stream
Hourly in situ phosphorus, conductivity, turbidity, dissolved oxygen, pH, and chlorophyll measurements were collected from January 2004 to November 2006 for the River Kennet, 2 km downstream of a sewage effluent inlet. Excess carbon dioxide pressure (EpCO2) was calculated from continuous pH and spot alkalinity measurements. EpCO2 and dissolved oxygen were used to estimate rates of photosynthesis and respiration. These parameters were examined alongside flow, water temperature and solar radiation to explore controls on phosphorus dynamics and in-stream productivity. Diurnal, event and seasonal patterns were observed in phosphorus concentrations. The diurnal and seasonal variations appeared to be related to the upstream sewage treatment works. The event patterns coincided with periods of high flow, and were attributed to diffuse sources. Chlorophyll behaved independently of phosphorus concentration and returned to baseline levels before photosynthesis rate. This indicated that, during the period of study, in-stream productivity was primarily controlled by aquatic plants other than phytoplankton
Recommended from our members
Stream-bed phosphorus in paired catchments with different agricultural land use intensity
Stream-bed sediments from three paired catchments, each draining a lower agricultural intensity system and a higher agricultural intensity system, were analysed for (a) total P (TP), (b) bioavailable-P (Resin-P), (c) equilibrium phosphorus concentration (EPC0), and (d) degree of phosphorus saturation (DPS). The influence of agriculture on sediment P was explored within the context of other key variables that may control the sediment P concentrations such as particle size, Fe, Ca and organic matter content, and in terms of potential implications of sediment P to in-stream biota. TP concentrations, EPC0, and the proportion of fine sediment were highest at the sites with the greater agricultural impact. Higher concentrations of bioavailable-P were also found in higher intensity agricultural systems. However, the highest concentrations of bioavailable-P were found at sites with point source inputs. Sites with high Fe concentrations had higher TP concentrations relative to agricultural intensity, but also had lower DPS values, illustrating that the sediment still had the capacity to take up P in a strongly bound form. The results from this study show that higher risk agricultural practices (intensive arable production and dairy and beef production) can lead either directly, or indirectly through increased inputs of fine sediment, to increased sediment TP concentrations. The importance of geochemical and physical controls on the bed sediments’ capacity to mitigate high P inputs in headwater lowland streams, especially under low flows and times of eutrophication risk in spring and summer is illustrated
Recommended from our members
Measurement of soluble reactive phosphorus concentration profiles and fluxes in river-bed sediments using DET gel probes
DET (diffusive equilibrium in thin films) gel probes were used for sampling river-bed sediment porewaters, to characterise in situ soluble reactive phosphorus (SRP) concentration profiles and fluxes. DET probes were deployed in three contrasting rural streams: (1) a headwater ‘pristine’ stream, with minimal P inputs from low intensity grassland and no point sources, (2) an intensively cultivated arable catchment, and (3) a
stream subject to high P loadings from sewage effluent and intensive arable farming. The DET results showed highly enriched porewater SRP concentrations of between ca. 400 and 5000 ug-P/1 in the sewage-impacted stream. In contrast, the arable and pristine streams had porewater SRP concentrations <70 ug-P/1 and <20 ug-P/1, respectively. Porewater SRP concentration profiles in both the sewage-impacted and arable-impacted streams showed well-defined vertical structure, indicating internal sources and sinks of SRP within the sediment. However, there was little variability in porewater SRP concentrations in the pristine stream. The DET porewater profiles indicated net diffusion of SRP (a) from the
overlying river water into the surface sediment and (b) from subsurface sediment upwards towards the sediment–water interface. A mass balance for the sewage-impacted site showed that the influx of SRP into the surface sediments from the overlying river water was small (ca. 1% of the daily river SRP load). The DET results indicated that, in the arable and sewage-impacted streams, the surface ‘cap’ of fine sediment may play an important
role in inhibiting upward movement of SRP from subsurface porewaters into the overlying river water, under steady-state, low-flow conditions
Internal loading of phosphorus in a sedimentation pond of a treatment wetland: Effect of a phytoplankton crash
Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH4+) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment–water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH4+ in March, but became subject to a net internal loading of TP, SRP and NH4+ in May, with SRP concentrations increasing by up to 41 μM (1300 μl− 1). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: − 8.2 μmol m− 2 day− 1) to a net source of SRP in June (average diffusive flux: + 1324 μmol m− 2 day− 1). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7 mol-P day− 1 were removed by photosynthesis and 23 mol-P day− 1 were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new ponds designed to treat nutrient waste
High-frequency phosphorus monitoring of the River Kennet, UK: are ecological problems due to intermittent sewage treatment works failures?
The River Kennet in southern England has exhibited excessive benthic algal growth and associated ecological problems, such as loss of macrophytes and invertebrates, since the 1980s. These ecological problems were attributed to regular peaks in phosphorus concentration, which were widely attributed to intermittent failures of the Marlborough sewage treatment works (STW). This study deployed highfrequency phosphorus auto-analysers to monitor the total reactive phosphorus (TRP) concentrations of Marlborough STW final effluent and the downstream River Kennet at hourly and 30 minute resolution respectively, between 2008 and 2009. This monitoring confirmed that the Marlborough STW was operating well within its 1000 mg l-�1 annual mean total phosphorus consent limit, with mean total P and soluble reactive P concentrations of 675 and 345 mg l-�1 respectively. There were two occasions where effluent TRP concentration exceeded 1000 mg l-�1, and only one of these resulted in a peak in TRP concentration of over 100 mg l-�1 in the River Kennet at Mildenhall. The other nine peaks of over 100 mg l-�1 in the River Kennet during the monitoring period were associated with storm events, indicating that
diffuse-source inputs and remobilisation of stored within-channel phosphorus were the cause of the peaks in river concentration, rather than Marlborough STW. The value of high-frequency environmental monitoring and the problems associated with using nutrient auto-analysers in the field
are discussed. Seasonal phosphorus consents for STWs could provide a useful and cost effective means to improve both water quality and river ecology in the upper River Kennet