2 research outputs found

    An evaluation of cell proliferation and adhesion on vertically-aligned multi-walled carbon nanotube films

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOBiocompatibility tests were performed on vertically-aligned multi-walled carbon nanotube (MWCNT) films produced by microwave plasma chemical vapor deposition on titanium substrates with iron (Fe) and nickel (Ni) as catalysts. The cell adhesion and morphology of L-929 mouse fibroblast cells were studied by high resolution scanning electron microscopy, after up to 7 days incubation periods. Cell viability and proliferation were evaluated by two "in vitro" tests: (1) 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT), and (2) lactate dehydrogenase (LDH) assays. Low level of bioavailable Fe and Ni was determined by inductively coupled plasma optical emission spectrometry. Neither functionalization nor purification of MWCNT films was necessary to obtain good response to the biocompatibility tests. Efficient cell growth and non-toxicity suggest the use MWCNTs in tissue regeneration. The MWCNT films stimulated the cell growth, showing a proliferation 20% higher than on Ti481245254FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP [08/116425, 07/00013-4]08/116425; 07/00013-

    Biocompatibility Differences Between Dispersed And Vertically-aligned Carbon Nanotubes: An In Vitro Assays Review

    No full text
    An overview about carbon nanotube (CNT) production and quality parameters will be presented, as well a review of current literature about "in vitro"assays commonly used to evaluate the biocompatibility of CNT. The limits of colorimetric assays for CNTs evaluation will be discussed, using comparisons between dispersed CNT and CNT arrays. The influence of nanotopography and wettability of CNT scaffolds for cell adhesion will be shown. Studies carried out in our laboratories with vertically-aligned carbon nanotubes (VACNT) will also be presented. We have shown the interaction among CNT (VACNT) and four cell lines: mouse fibroblasts (L-929), mouse embryo fibroblast (C57/BL6) with or without green fluorescent protein (GFP) and human osteoblast (SaOS-2). The biocompatibility tests were performed with in vitro tests on raw-VACNT and after superficial modification by O2 plasma, which changes its hydrophobic character. The non-toxicity, cell viability, proliferation and cell adhesion were evaluated by: (i) 2-(4,5-dimethyl-2-thioazoly)-3,5-diphenyl-2H-tetrazolium bromide (MTT) assay; (ii) Lactate dehydrogenase (LDH) assay; (iii) neutral red (NR) assay; (iv) Scanning electron microscopy (SEM); and fluorescence microscopy. The influence of catalyst type, VACNT density and superficial modification were evaluated by morphological, structural and superficial techniques: SEM, Transmission electron microscopy (TEM), Raman spectroscopy, contact angle (CA) and X-Ray Photoelectron Spectroscopy (XPS). High cell viability, exceptional cell adhesion and preference were achieved. © 2009 by Nova Science Publishers, Inc. All rights reserved.281316Peppas, N.A., Langer, R., New challenges in biomaterials (1994) Science, 263, pp. 1715-1720Xu, T., Zhang, N., Nichols, H.L., Shi, D.L., Wen, X.J., Modification of nanostructured materials for biomedical applications (2007) Materials Science & Engineering C-biomimetic and Supramolecular Systems, 27 (3), pp. 579-594Goldberg, M., Langer, R., Jia, X., Nanostructured materials for applications in drug delivery and tissue engineering (2007) Journal of Biomaterials Science, 18 (3), pp. 241-268Thomas, V., Dean, D.R., Vohra, Y.K., Nanostructured Biomaterials for regenerative medicine (2006) Current Nanoscience, 2 (3), pp. 155-177Bhattacharyya, S., Guillott, S., Dabboue, H., Tranchant, J.F., Salvetat, J.P., Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds (2008) Biomacromolecules, 9 (2), pp. 505-509Cui, D., Advances and Prospects on Biomolecules Functionalized Carbon Nanotubes (2007) Journal of Nanoscience and Nanotechnology, 7 (4-5), pp. 1298-1314Pham, Q.P., Sharma, U., Mikos, A.G., Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review (2006) Tissue Engineering, 12 (5), pp. 1197-1211Salvetat, J.P., Bonard, J.M., Thomson, N.H., Mechanical properties of carbon nanotubes (1999) Applied Physics A: Materials Science & Processing, 69, pp. 255-260Endo, M., Strano, M.S., Ajayan, P.M., Potential applications of carbon nanotubes (2008) Carbon nanotubes: topics in applied physics, 111, pp. 13-61Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernandez, E., Electronic, thermal and mechanical properties of carbon nanotubes (2004) Philosophical transactions of the royal society of london series a-mathematical physical and engineering sciences, 362 (1823), pp. 2065-2098Price, R.L., Waid, M.C., Haberstroh, K.M., Webster, T.J., Selective bone cell adhesion on formulations containing carbon nanofibers (2003) Biomaterials, 24, pp. 1877-1887Cýnar, O., Yuda, Y., Carbon Nanotube Synthesis via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters (2006) Fullerenes, Nanotubes, and Carbon Nanostructures, 14, pp. 17-37Suh, D.J., Park, T.J., Kim, J.H., Kim, K.L., Fast sol-gel synthetic route to high surface area alumina aerogels (1997) Chem. Mater., 9 (9), pp. 1903-1905Ivanov, V., Nagy, J.B., Lambin, P., Lucas, A., Zhang, X.B., Zhang, X.F., Bernaerts, D., Van Landuyt, J., The study of carbon nanotubules produced by catalytic method (1994) Chem.Phys. Lett., 223 (4), pp. 329-335Xu, C., Zhu, J., One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis (2004) Nanotechnolog, 11, pp. 1671-1681Schwarz, J.A., Contescu, C., Contescu, A., Methods for preparation of catalytic materials (1995) CHEMICAL REVIEWS, 95 (3), pp. 477-510Hernadi, K., Fonseca, A., Nagy, J.B., Siska, A., Kiricsi, I., Production of nanotubes by the catalytic decomposition of different carbon-containing compounds (2000) Applied Catalysis A: General, 199 (2), pp. 245-255Zhang, Q., Yoon, S.F., Ahn, J., Gan, B., Rusli, Y.U., Carbon films with high density nanotubes produced using microwave plasma assisted CVD J (2000) Phys. Chem. Solids, 61, pp. 1179-1183Choi, Y.C., Bae, D.J., Lee, Y.H., Lee, B.S., Han, I.T., Choi, W.B., Lee, N.S., Kim, J.M., Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition (2000) Synth. Met., 108, pp. 159-163Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide Chemical Physics Letters, 260 (3-4), pp. 471-475See, C.H., Harris, A.T., A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition (2007) Ind. Eng. Chem. Res., 46, pp. 997-1012Stevens, M.M., George, J.H., Exploring and Engineering the Cell Surface Interface (2005) Science, 310 (5751), pp. 1135-1138Chung, Y.H., Jou, S., Carbon nanotubes from catalytic pyrolysis of polypropylene (2005) Mater. Chem. Phys., 92 (1), pp. 256-259Nakazawa, S., Yokomori, T., Mizomoto, M., Flame synthesis of carbon nanotubes in a wall stagnation flow (2005) Chem. Phys. Lett., 403 (1-3), pp. 158-162Zhang, Y.F., Gamo, M.N., Xiao, C.Y., Ando, T., Liquid phase synthesis of carbon nanotubes (2002) Physica B, 323 (1-4), pp. 293-295Paradise, M., Goswami, T., Carbon nanotubes - Production and industrial applications (2007) Materials & Design, 28 (5), pp. 1477-1489Zhang, Y.F., Gamo, M.N., Xiao, C.Y., Ando, T., Liquid phase synthesis of carbon nanotubes (2002) Physica B, 323 (1-4), pp. 293-295Chen, Y., Gerald, J.F., Chadderton, L.T., Chaffron, J., Solid-state formation of carbon and boron nitride nanotubes (2000) Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2, 343 (3), pp. 63-67Awasthi, K., Kamalakaran, R., Singh, A.K., Srivastava, O.N., Ball-milled carbon and hydrogen storage (2002) Int. J.Hyd. Eng., 27, pp. 425-432Amirov, R.H., Asinovsky, E.I., Isakaev, E.K., Kiselev, V.I., Thermal plasma torch for synthesis of carbon nanotubes (2006) High temperature material processes, 10 (2), pp. 197-205Belin, T., Epron, F., Characterization methods of carbon nanotubes: a review (2005) Materials Science and Engineering B, 119, pp. 105-118Zhou, W., Wang, Z.L., (2007), Scanning Microscopy for Nanotechnology Techniques and Applications, HardcoverZhong, L.W., Chun, H., Electron Microscopy of Nanotubes (2003), Kluwer Academic PublishersDillon, A.C., Yudasaka, M., Dresselhaus, M.S., Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials (2004) Journal of Nanoscience and Nanotechnology, 4 (7), pp. 691-703Sniadecki, N.J., Desai, R.A., Ruiz, S.A., Chen, C.S., Nanotechnology for Cell-Substrate Interactions (2005) Annals of Biomedical Engineering, 34 (1), pp. 59-74Kataura, H., Kumazawaa, Y., Maniwaa, Y., Umezub, I., Suzuki, S., Ohtsuka, Y.C., Achiba, Y., Optical Properties of Single-Wall Carbon Nanotubes (1999) Synthetic Metals, 103, pp. 2555-2558Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes (2007) Carbon, 45 (5), pp. 913-921Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Veríssimo, C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44 (11), pp. 2202-2211Maultzsch, J., Reich, S., Thomsen, C., Dobardi, E., Milevi, I., Damnjanovi, M., Phonon dispersion of carbon nanotubes (2002) Solid State Communications, 121 (9-10), pp. 471-474Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A.C., Robertson, J., Phonon linewidths and electron-phonon coupling in graphite and nanotubos (2006) Physical Review B, 73, pp. 155426-155432Burghard, M., Electronic and vibrational properties of chemically modified single-wall carbon nanotubos (2005) Surface Science Reports, 58, pp. 1-109Eklund, P.C., Holden, J.M., Jishi, R.A., Vibrational modes of carbon nanotubesSpectroscopy and theory (2005) Carbon, 33 (7), pp. 959-972Yusa, H., Watanuki, T., X-ray diffraction of multiwalled carbon nanotube under high pressure: Structural durability on static compression (2005) Carbon, 43 (3), pp. 519-523Shpak, A.P., Kolesnik, S.P., Mogilny, G.S., Petrov, Y.N., Sokhatsky, V.P., Trophimova, L.N., Shanina, B.D., Gavriljuk, V.G., Structure and magnetic properties of iron nanowires encased in multiwalled carbon nanotubos (2007) Acta Materialia, 55, pp. 1769-1778Harrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering (2007) Biomaterials, 28, pp. 344-353Huang, W., Wang, Y., Luo, G., Wei, F., 99% purity multi-walled carbon nanotubes by vacuum high-temperature annealing (2003) Carbon, 41, pp. 2585-25909Li, J., Zhang, Y., A simple purification for single-walled carbon nanotubos (2005) Physica E: Low-dimensional Systems and Nanostructures, 28 (3), pp. 309-312Itkis, M.E., Perea, D.E., Niyogi, R.J.S., HaddonJ, R.C., Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes (2005) Am. Chem. Soc., 127 (10), pp. 3439-3448Jung, Y.S., Jeon, D.Y., Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition (2002) Applied Surface Science, 193 (1-4), pp. 129-137Zhao, C.G., Ji, L.J., Liu, H.J., Hu, G.J., Zhang, S.M., Yang, M.S., Yang, Z.Z., Functionalized carbon nanotubes containing isocyanate groups (2004) Journal of Solid State Chemistry, 177 (12), pp. 4394-4398Okpalugo, T.I.T., Papakonstantinou, P., Murphy, H., McLaughlin, J., Brown, N.M.D., High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs (2005) Carbon, 43 (1), pp. 153-161Yanl, Y.H., Cuil, J., Chan-Park, M.B., Wang, X., Wu, Q.Y., Systematic studies of covalentfunctionalization of carbon nanotubes viaargon plasma-assisted UV grafting (2007) Nanotechnology, 18, pp. 115712-115719Miles, J., www.measurement.gov.au/assets/documents/nmiinternet/NMI_TR_1220061130091 501.pdf, Nanometrology: The Critical Role of Measurement in Supporting Australian Nanotechnology. 2006 [08/09/15]Freiman, S., Hooker, S., Migler, K., Arepalli, S., Measurement Issues in Single Wall Carbon Nanotubes (2008) NIST Special Publication, 960 (19), p. 40http://www.msel.nist.gov/Nanotube2/Carbon_Nanotubes_Guide.htm, National Intitute of Standards and Technology (NIST). Measurement Issues in Single Wall Carbon Nanotubes. 2005 [08/09/15]Dee, K.C., Puleo, D.A., Bizios, R., (2002), An Introduction To Tissue-Biomaterial Interactions Wiley, New YorkRatner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Biomaterials Science: An Introduction to Materials in Medicine (2004), Second edition. Academic Press, San DiegoHelland, Å., Wick, P., Koehler, A., Schmid, K., Som, C., Reviewing the environmental and human health knowledge base of carbon nanotubes (2007) Environ Health Perspect, 115 (8), pp. 1125-1131Mattson, M.P., Haddon, R.C., Rao, A.M., Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth (2001) J Mol. Neurosci., 14, pp. 175-182Abarrategi, A., Gutiérrez, M.C., Moreno-Vicente, C., Hortigüela, M.J., Ramos, V., López-Lacomba, J.L., Ferrer, M.L., Monte, F., Multiwall carbon nanotube scaffolds for tissue engineering purposes (2008) Biomaterials, 29, pp. 94-102Berridge, M.V., Herst, P.M., Tan, A.S., Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction (2005) Biotechnol Annu Rev, 11, pp. 127-152Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Method, 65, pp. 55-63Barltrop, J.A., Owen, T.C., 5-(3-Carboxymathoxyphenil)-2-(4,5-dimenthylthiazoly)-3-(4-sulfophenyl) tetrazolium, inner salt (MTS) and related analgs of 3-(4,5-dimethylthiazolyl)-2 5-diphenyltetrazolium bromide (MTT) reducing to purple water soluble formazans a cell-viability indicators (1991) Bioorg. Med. Chem. Lett., 1 (11), pp. 611-614Borenfreund, E., Puener, J.A., A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90) (1984) J. Tissue Culture Method, 9, p. 1Decker, T., Lohmann-Matthes, M.L., A quick and simple method 228 for the quantitation of lactate dehydrogenase release in measurements of cellular 229 cytotoxicity and tumor necrosis factor (TNF) activity (1988) J. Immunol. Methods, 15 (230), pp. 61-69Alamar BlueTM product information pamphlet. BioSource International, Inc., USAO'Brien, J., Wilson, I., Orton, T., Pognan, F., Investigation of alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity (2000) Eur. J. Biochem, 267, pp. 5421-5426Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein dye binding (1976) Annal Biochem, 72, pp. 248-254Matejovicova, M., Mubagwa, K., Flameng, W., Effect of vanadate on protein determination by the commassie brilliant blue microasay procedure (1997) Annal Biochem, 245, pp. 252-254De Nicola, M., Gattia, D.M., Belluci, S., De Bellis, G., Micciula, F., Pastore, R., Tiberia, A., Ghibelli, L., Effect of different carbon nanotubes on cell viability and proliferation (2007) Journal Physics Condens. Matter, 19, pp. 395013-395020Mwenifumbo, S., Shaffer, M.S., Stevens, M.M., Exploring cellular behaviour with multi-walled carbon nanotube constructs (2007) Journal of Materials Chemistry, 17 (19), pp. 1894-1902Zhang, X., Wang, X., Lu, Q., Fu, C., Influence of carbon nanotube scaffolds on human cervical carcinoma HeLa cell viability and focal adhesion kinase expression (2008) Carbon, 46 (3), pp. 453-460Kalbacova, M., Kalbac, M., Dunsch, L., Hempel, U., Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts (2007) Physica S.Sol. B, 244 (11), pp. 4356-4359Zhang, D., Yi, C., Zhang, J., Chen, Y., Yao, X., Yang, M., The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts (2007) Nanotechnology, 18, pp. 475102-475111Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion (1992) Cell, 69, pp. 11-25Geiger, B., Bershadsky, A., Pankov, R., Yamada, K.M., Assembly and mechanosensory function of focal contacts (2001) Nat. Rev. Mol. Cell. Biol, 2, pp. 793-805Krysko, D.V., Vanden Berghe, T., D' Herde, K., Vandenabeele, P., Apoptosis and necrosis: Detection, discrimination and phagocytosis (2008) Methods, 44, pp. 205-221Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., Henson, P.M., Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages (1992) J Immunol, 148 (7), pp. 2207-2216Denecker, G., Vercammen, D., Steemans, M., Vanden Berghe, T., Brouckaert, G., Van Loo, G., Zhivotovsky, B., Vandenabeele, P., Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria (2001) Cell Death Differ, 8 (8), pp. 829-840Kroemer, G., Reed, J.C., Mitochondrial control of cell death (2000) Nat Med, 6 (5), pp. 513-519Van Loo, G., Demol, H., Van Gurp, M., Hoorelbeke, B., Schotte, P., Beyaert, R., Zhivotovsky, B., Vandenabeele, P., A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid (2002) Cell Death Differ, 9 (3), pp. 301-308Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S., A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD (1998) Nature, 391 (6662), pp. 43-50Shi, X., Sitharaman, B., Pham, Q.P., Liang, F., Wu, K., Billups, W.E., Wilson, L.J., Mikos, A.G., Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering (2007) Biomaterials, 28 (28), pp. 4078-4090Vanden, B.T., Declercq, W., Vandenabeele, P., NADPH oxidases: New players in TNIF-induced necrotic cell death (2007) Molecular Cell, 26 (6), pp. 769-771Borm, P.J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Oberdorster, E., The potential risks of nanomaterials: a review carried out for ECETOC (2006) Part Fibre Toxicol, 3 (11), pp. 1-35Lam, C.W., James, J.T., McCluskey, R., Hunter, R.I., Pulmonary toxicity of a single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation (2004) Toxicol. Sci., 77, pp. 126-134Jia, G., Wang, H., Ya, N.L., Wang, X., Pei, R., Yan, T., Zhao, Y., Guo, X., Cytotoxicity of carbon nanomaterails: single-wall nanotube, multi-wall nanotube, and fullerene (2005) Environ Sci Technol, 39 (5), pp. 1378-1383Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray, A.R., Gandelsman, V.Z., Maynard, A., Baron, P., Exposure to carbon nanotube material :assessment of nanotube cytotoxicity using human keratinocyte cells (2003) J Toxicol. Envirom. Health A., 66, pp. 1909-1926Bohm, L., Schild, H., Apoptosis: the complex scenario for a silent cell death (2003) Mol. Imaging Biol., 5, pp. 2-14Coppola, S., Ghilbelli, L., GSH extrusion and and the mitochondrial pathway of apoptotic signalling (2000) Biochem Soc Trans, 28, pp. 56-61Fiers, W., Beyaert, R., Declerq, W., Vandenabeele, P., More than one way to die: apoptosis, necrosis and reactive oxygen damage (1999) Oncogene, 18, pp. 719-730Edinger, A.L., Thompson, C.B., DeatRatner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Biomaterials Science: An Introduction to Materials in Medicine. Second edition (2004), Academic Press, San DiegoMagrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Forro, L., Cellular toxicity of carbon-based nanomaterials (2006) Nano Lett.;, 6, pp. 1121-1125Tian, F.R., Cui, D.X., Schwarz, H., Estrada, G.G., Kobayashi, H., Cytotoxicity of single-wall carbon nanotubes on human fibroblasts (2006) Toxicol in Vitro, 20 (7), pp. 1202-1212Brown, D.M., Kinloch, I.A., Bangert, U., Windle, A.H., Walter, D.M., Walker, G.S., An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis (2007) Carbon, 45 (9), pp. 1743-1756Manna, S.K., Sarkar, S., Barr, J., Wise, K., Barrera, E.V., Jejelowo, O., Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes (2005) NanoLetters, 5 (9), pp. 1676-1684Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., Beguin, F., In vitro studies of carbon nanotubes biocompatibility (2006) Carbon, 44 (1), pp. 106-1111Price, R.A., Waid, M.C., Karen, M., Haberstroh, K.M., Selective bone cell adhesion on formulations containing carbon nanofibers (2003) Biomaterials, 24, pp. 1877-1887Zanello, L.P., Zhao, B., Hu, H., Haddon, R.C., Bone cell proliferation on carbon nanotubes (2006) Nano Lett, 6, pp. 562-567Naguib, N.N., Mueller, Y.M., Bojuczuc, P.M., Effect of carbon nanotube structure on the binding of antibodies (2005) Nanotech, 16, pp. 567-571Giannona, S., Firkowska, I., Rojas-Chapana, J., Giersig, M., Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblasts-like cells (2007) J. Nanosc. and Nanotec., 7, pp. 1679-1683Lobo, A.O., Antunes, E.F., Machado, A.H.A., Pacheco-Soares, C., Trava-Airoldi, V.J., Corat, E.J., Cell viability and adhesion on as grown multi-wall carbon nanotube films (2008) Mater. Sci. Eng. C, 28 (2), pp. 264-269Lobo, A.O., Antunes, E.F., Palma, M.B.S., Pacheco-Soares, C., Trava-Airoldi, V.J., Corat, E.J., Biocompatibility of multi-walled carbon nanotubes films growth titanium and silicon surfaces (2008) Mater. Sci. Eng. C, 28 (4), pp. 532-538Gabay, T., Jakobs, E., Bem-Jacob, E., Engineered self-organization of neuronal networks using carbon nanotube clusters (2005) Physica A, 21 (350), pp. 611-621Correa-Duarte, M.A., Wagner, N., Rojas-Chapana, J., Fabrication and biocompatibility of carbon nanotube-based 3d networks as scaffolds for cell seeding and growth (2004) Nano Letters, 4, pp. 2233-2236Park, K.H., Chhowalla, M., Iqbal, Z., Sesti, F., Single-walled carbon nanotubes are a new class of ion channel blockers (2003) J Biol Chem, 278 (50), pp. 50212-50216Cui, D.X., Tian, F.R., Ozkan, C.S., Wang, M., Gao, H.J., Effect of single wall carbon nanotubes on human HEK293 cells (2005) Toxicol Lett, 155 (1), pp. 73-85Bottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Multi-walled carbon nanotubes induce T lymphocyte apoptosis (2006) Toxicol Lett, 160 (2), pp. 121-126Worle-Knirsch, J.M., Pulskamp, K., And Krug, H.F., Oops they did it again! Carbon Nanotubes hoax scientists in viability Assays (2006) Nano Lett, 6, pp. 1261-1268Casey, A., Davoren, M., Herzog, E., Lyng, F., Byrne, H., Chambers, G., Probing the interaction of single-walled carbon nanotubes within cell culture medium as a precursor to toxicity testing (2007) Carbon, 45 (1), pp. 34-40Casey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis confirms the interactions between single-walled carbon nanotubes and various
    corecore