12,363 research outputs found

    Quantum Computers and Dissipation

    Get PDF
    We analyse dissipation in quantum computation and its destructive impact on efficiency of quantum algorithms. Using a general model of decoherence, we study the time evolution of a quantum register of arbitrary length coupled with an environment of arbitrary coherence length. We discuss relations between decoherence and computational complexity and show that the quantum factorization algorithm must be modified in order to be regarded as efficient and realistic.Comment: 20 pages, Latex, 7 Postscript figure

    Corrections to Universal Fluctuations in Correlated Systems: the 2D XY-model

    Full text link
    Generalized universality, as recently proposed, postulates a universal non-Gaussian form of the probability density function (PDF) of certain global observables for a wide class of highly correlated systems of finite volume N. Studying the 2D XY -model, we link its validity to renormalization group properties. It would be valid if there were a single dimension 0 operator, but the actual existence of several such operators leads to T-dependent corrections. The PDF is the Fourier transform of the partition function Z(q) of an auxiliary theory which differs by a dimension 0 perturbation with a very small imaginary coefficient iq/N from a theory which is asymptotically free in the infrared. We compute the PDF from a systematic loop expansion of ln Z(q).Comment: To be published in Phys. Rev.

    Cluster Algorithm Renormalization Group Study of Universal Fluctuations in the 2D Ising Model

    Full text link
    In this paper we propose a novel method to study critical systems numerically by a combined collective-mode algorithm and Renormalization Group on the lattice. This method is an improved version of MCRG in the sense that it has all the advantages of cluster algorithms. As an application we considered the 2D Ising model and studied wether scale invariance or universality are possible underlying mechanisms responsible for the approximate "universal fluctuations" close to a so-called bulk temperature T∗(L)T^*(L). "Universal fluctuations" was first proposed in [1] and stated that the probability density function of a global quantity for very dissimilar systems, like a confined turbulent flow and a 2D magnetic system, properly normalized to the first two moments, becomes similar to the "universal distribution", originally obtained for the magnetization in the 2D XY model in the low temperature region. The results for the critical exponents and the renormalization group flow of the probability density function are very accurate and show no evidence to support that the approximate common shape of the PDF should be related to both scale invariance or universal behavior.Comment: 6 pages, 4 figures and 3 table

    Not an ordinary bank but a great engine of state: the Bank of England and the British economy, 1694–1844

    Get PDF
    From its foundation as a private corporation in 1694, the Bank of England extended large amounts of credit to support the British private economy and to support an increasingly centralised British state. The Bank helped the British state reach a position of geopolitical and economic hegemony in the international economic order. In this paper, we deploy recalibrated financial data to analyse an evolving trajectory of connections between the British economy, the state, and the Bank of England. We show how these connections contributed to form an effective and efficient fiscal–naval state and promote the development of a system of financial intermediation for the economy. This symbiotic relationship became stronger after 1793. The evidence that we consider here shows that although the Bank was nominally a private institution and profits were paid to its shareholders, it was playing a public role well before Bagehot's doctrine

    A method to find quantum noiseless subsystems

    Full text link
    We develop a structure theory for decoherence-free subspaces and noiseless subsystems that applies to arbitrary (not necessarily unital) quantum operations. The theory can be alternatively phrased in terms of the superoperator perspective, or the algebraic noise commutant formalism. As an application, we propose a method for finding all such subspaces and subsystems for arbitrary quantum operations. We suggest that this work brings the fundamental passive technique for error correction in quantum computing an important step closer to practical realization.Comment: 5 pages, to appear in Physical Review Letter

    Decoherence-free dynamical and geometrical entangling phase gates

    Full text link
    It is shown that entangling two-qubit phase gates for quantum computation with atoms inside a resonant optical cavity can be generated via common laser addressing, essentially, within one step. The obtained dynamical or geometrical phases are produced by an evolution that is robust against dissipation in form of spontaneous emission from the atoms and the cavity and demonstrates resilience against fluctuations of control parameters. This is achieved by using the setup introduced by Pachos and Walther [Phys. Rev. Lett. 89, 187903 (2002)] and employing entangling Raman- or STIRAP-like transitions that restrict the time evolution of the system onto stable ground states.Comment: 10 pages, 9 figures, REVTEX, Eq. (20) correcte

    Entanglement and Quantum Noise Due to a Thermal Bosonic Field

    Full text link
    We analyze the indirect exchange interaction between two two-state systems, e.g., spins 1/2, subject to a common finite-temperature environment modeled by bosonic modes. The environmental modes, e.g., phonons or cavity photons, are also a source of quantum noise. We analyze the coherent vs noise-induced features of the two-spin dynamics and predict that for low enough temperatures the induced interaction is coherent over time scales sufficient to create entanglement. A nonperturbative approach is utilized to obtain an exact solution for the onset of the induced interaction, whereas for large times, a Markovian scheme is used. We identify the time scales for which the spins develop entanglement for various spatial separations. For large enough times, the initially created entanglement is erased by quantum noise. Estimates for the interaction and the level of quantum noise for localized impurity electron spins in Si-Ge type semiconductors are given.Comment: 12 pages, 9 figures; typos correcte

    Observable geometric phase induced by a cyclically evolving dissipative process

    Get PDF
    In a prevous paper (Phys. Rev. Lett. 96, 150403 (2006)) we have proposed a new way to generate an observable geometric phase on a quantum system by means of a completely incoherent phenomenon. The basic idea was to force the ground state of the system to evolve ciclically by "adiabatically" manipulating the environment with which it interacts. The specific scheme we have previously analyzed, consisting of a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath whose squeezing parameters are smoothly changed in time along a closed loop, is here solved in a more direct way. This new solution emphasizes how the geometric phase on the ground state of the system is indeed due to a purely incoherent dynamicsComment: 6 pages, 1 figur

    The Extended Shapes of Galactic Satellites

    Full text link
    We are exploring the extended stellar distributions of Galactic satellite galaxies and globular clusters. For seven objects studied thus far, the observed profile departs from a King function at large r, revealing a ``break population'' of stars. In our sample, the relative density of the ``break'' correlates to the inferred M/L of these objects. We discuss opposing hypotheses for this trend: (1) Higher M/L objects harbor more extended dark matter halos that support secondary, bound, stellar ``halos''. (2) The extended populations around dwarf spheroidals (and some clusters) consist of unbound, extratidal debris from their parent objects, which are undergoing various degrees of tidal disruption. In this scenario, higher M/L ratios reflect higher degrees of virial non-equilibrium in the parent objects, thus invalidating a precept underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of Galaxies and Their Halo

    A socio-historic overview of social pedagogy and social work in Mexico

    Get PDF
    In this article, we offer a socio-historic overview of the development of social work and social pedagogy in Mexico. First, we examine the rise of the welfare state in Mexico in the immediate post-revolution period and the way the new secular government assumed control of social intervention. We describe the inception of the School of Social Assistance and the emergence of social work in the country, as well as exploring the role and influence of Cultural Missions and the training of social workers. We discuss the role of Fundamental Education, rural schools and their resemblance to the ideals of social pedagogy. Finally, we describe the founding of the Degree in Educational Intervention, which we consider sows the seeds of socio-pedagogical thought and practice in Mexico. We conclude that, despite the many periods of reorganisation of social intervention by successive governments, different initiatives use education to promote individual and collective development. Though social pedagogy does not exist as a profession in Mexico and social work is an imprecisely defined profession, education has a socialising potential that underpins pedagogical work of an extensive network of areas and agents animated by social ideals and goals
    • …
    corecore