934 research outputs found

    Double covers of P(N) as very ample divisors

    Get PDF

    In vitro and in vivo selection of potentially probiotic lactobacilli from Nocellara del Belice table olives

    Get PDF
    Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value

    Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: the vertical transition approximation

    Get PDF
    In this paper we describe in detail a general and efficient methodology, based on the perturbed matrix method and molecular dynamics simulations, to model UV-Vis absorption and emission spectra including vibrational and conformational effects. The basic approximation used is to consider all the chromophore atomic coordinates as semiclassical degrees of freedom, hence allowing the calculation of the complete spectral signal by using the electronic vertical transitions as obtained at each possible chromophore configuration, thus including the contributions of vibrations and conformational transitions into the spectrum. As shown for the model system utilized in this paper, solvated 1-phenyl-naphthalene, such an approximation can be rather accurate to reproduce the absorption and emission spectral line shape and properties when, as it often occurs, the vertical vibronic transition largely overlaps the other non-negligible vibronic transitions

    A robust iterative learning control for continuous-time nonlinear systems with disturbances

    Get PDF
    In this paper, we study the trajectory tracking problem using iterative learning control for continuous-time nonlinear systems with a generic fixed relative degree in the presence of disturbances. This class of controllers iteratively refine the control input relying on the tracking error of the previous trials and some properly tuned learning gains. Sufficient conditions on these gains guarantee the monotonic convergence of the iterative process. However, the choice of the gains is heuristically hand-tuned given an approximated system model and no information on the disturbances. Thus, in the cases of inaccurate knowledge of the model or iteration-varying measurement errors, external disturbances, and delays, the convergence condition is unlikely to be verified at every iteration. To overcome this issue, we propose a robust convergence condition, which ensures the applicability of the pure feedforward control even if other classical conditions are not fulfilled for some trials due to the presence of disturbances. Furthermore, we quantify the upper bound of the nonrepetitive disturbance that the iterative algorithm is able to handle. Finally, we validate the convergence condition simulating the dynamics of a two degrees of freedom underactuated arm with elastic joints, where one is active, and the other is passive, and a Franka Emika Panda manipulator

    Priority-Based Distributed Coordination for Heterogeneous Multi-Robot Systems with Realistic Assumptions

    Get PDF
    A standing challenge in current intralogistics is to reliably, effectively, yet safely coordinate large-scale, heterogeneous multi-robot fleets without posing constraints on the infrastructure or unrealistic assumptions on robots. A centralized approach, proposed by some of the authors in prior work, allows to overcome these limitations with medium-scale fleets (i.e., tens of robots). With the aim of scaling to hundreds of robots, in this article we explore a decentralized variant of the same approach. The proposed framework maintains the key features of the original approach, namely, ensuring safety despite uncertainties on robot motions, and generality with respect to robot platforms, motion planners and controllers. We include considerations on liveness and report solutions to prevent or recover from deadlocks in specific situations. We validate the approach empirically in simulation with large, heterogeneous multi-robot fleets (with up to 100 robots) operating in both benchmark and realistic environments
    • …
    corecore