73 research outputs found

    PairWise Neighbours database: overlaps and spacers among prokaryote genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although prokaryotes live in a variety of habitats and possess different metabolic and genomic complexity, they have several genomic architectural features in common. The overlapping genes are a common feature of the prokaryote genomes. The overlapping lengths tend to be short because as the overlaps become longer they have more risk of deleterious mutations. The spacers between genes tend to be short too because of the tendency to reduce the non coding DNA among prokaryotes. However they must be long enough to maintain essential regulatory signals such as the Shine-Dalgarno (SD) sequence, which is responsible of an efficient translation.</p> <p>Description</p> <p>PairWise Neighbours is an interactive and intuitive database used for retrieving information about the spacers and overlapping genes among bacterial and archaeal genomes. It contains 1,956,294 gene pairs from 678 fully sequenced prokaryote genomes and is freely available at the URL <url>http://genomes.urv.cat/pwneigh</url>. This database provides information about the overlaps and their conservation across species. Furthermore, it allows the wide analysis of the intergenic regions providing useful information such as the location and strength of the SD sequence.</p> <p>Conclusion</p> <p>There are experiments and bioinformatic analysis that rely on correct annotations of the initiation site. Therefore, a database that studies the overlaps and spacers among prokaryotes appears to be desirable. PairWise Neighbours database permits the reliability analysis of the overlapping structures and the study of the SD presence and location among the adjacent genes, which may help to check the annotation of the initiation sites.</p

    Measuring Oscillating Walking Paths with a LIDAR

    Get PDF
    This work describes the analysis of different walking paths registered using a Light Detection And Ranging (LIDAR) laser range sensor in order to measure oscillating trajectories during unsupervised walking. The estimate of the gait and trajectory parameters were obtained with a terrestrial LIDAR placed 100 mm above the ground with the scanning plane parallel to the floor to measure the trajectory of the legs without attaching any markers or modifying the floor. Three different large walking experiments were performed to test the proposed measurement system with straight and oscillating trajectories. The main advantages of the proposed system are the possibility to measure several steps and obtain average gait parameters and the minimum infrastructure required. This measurement system enables the development of new ambulatory applications based on the analysis of the gait and the trajectory during a walk

    Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle

    Get PDF
    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV.ISSN:1424-822

    Experimental characterization of the twin-eye laser mouse sensor

    Get PDF
    This paper proposes the experimental characterization of a laser mouse sensor used in some optical mouse devices. The sensor characterized is called twin-eye laser mouse sensor and uses the Doppler effect to measure displacement as an alternative to optical flow-based mouse sensors. The experimental characterization showed similar measurement performances to optical flow sensors except in the sensitivity to height changes and when measuring nonlinear displacements, where the twin-eye sensor offered better performance. The measurement principle of this optical sensor can be applied to the development of alternative inexpensive applications that require planar displacement measurement and poor sensitivity to -axis changes such as mobile robotics.The authors acknowledge the support of the Government of Catalonia (Comissionat per a Universitats i Recerca, Departament d’Innovació, Universitats i Empresa) and the European Social Fund

    An embedded real-time red peach detection system based on an OV7670 camera, ARM Cortex-M4 processor and 3D Look-Up Tables

    Get PDF
    This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second
    • 

    corecore