77 research outputs found

    Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment

    Get PDF
    Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid

    The presence of senescent peripheral T-cells is negatively correlated to COVID-19 vaccine-induced immunity in cancer patients under 70 years of age

    Get PDF
    PurposeCancer patients are at risk of severe COVID-19 infection, and vaccination is recommended. Nevertheless, we observe a failure of COVID-19 vaccines in this vulnerable population. We hypothesize that senescent peripheral T-cells alter COVID-19 vaccine-induced immunity.MethodsWe performed a monocentric prospective study and enrolled cancer patients and healthy donors before the COVID-19 vaccination. The primary objective was to assess the association of peripheral senescent T-cells (CD28-CD57+KLRG1+) with COVID-19 vaccine-induced immunity.ResultsEighty cancer patients have been included, with serological and specific T-cell responses evaluated before and at 3 months post-vaccination. Age ≥ 70 years was the principal clinical factor negatively influencing the serological (p=0.035) and specific SARS-CoV-2 T-cell responses (p=0.047). The presence of senescent T-cells was correlated to lower serological (p=0.049) and specific T-cell responses (p=0.009). Our results sustained the definition of a specific cut-off for senescence immune phenotype (SIP) (≥ 5% of CD4 and ≥ 39.5% of CD8 T-cells), which was correlated to a lower serological response induced by COVID-19 vaccination for CD4 and CD8 SIPhigh (p=0.039 and p=0.049 respectively). While CD4 SIP level had no impact on COVID-19 vaccine efficacy in elderly patients, our results unraveled a possible predictive role for CD4 SIPhigh T-cell levels in younger cancer patients.ConclusionsElderly cancer patients have a poor serological response to vaccination; specific strategies are needed in this population. Also, the presence of a CD4 SIPhigh affects the serological response in younger patients and seems to be a potential biomarker of no vaccinal response

    Modification of Hydrophilic and Hydrophobic Surfaces Using an Ionic-Complementary Peptide

    Get PDF
    Ionic-complementary peptides are novel nano-biomaterials with a variety of biomedical applications including potential biosurface engineering. This study presents evidence that a model ionic-complementary peptide EAK16-II is capable of assembling/coating on hydrophilic mica as well as hydrophobic highly ordered pyrolytic graphite (HOPG) surfaces with different nano-patterns. EAK16-II forms randomly oriented nanofibers or nanofiber networks on mica, while ordered nanofibers parallel or oriented 60° or 120° to each other on HOPG, reflecting the crystallographic symmetry of graphite (0001). The density of coated nanofibers on both surfaces can be controlled by adjusting the peptide concentration and the contact time of the peptide solution with the surface. The coated EAK16-II nanofibers alter the wettability of the two surfaces differently: the water contact angle of bare mica surface is measured to be <10°, while it increases to 20.3±2.9° upon 2 h modification of the surface using a 29 µM EAK16-II solution. In contrast, the water contact angle decreases significantly from 71.2±11.1° to 39.4±4.3° after the HOPG surface is coated with a 29 µM peptide solution for 2 h. The stability of the EAK16-II nanofibers on both surfaces is further evaluated by immersing the surface into acidic and basic solutions and analyzing the changes in the nanofiber surface coverage. The EAK16-II nanofibers on mica remain stable in acidic solution but not in alkaline solution, while they are stable on the HOPG surface regardless of the solution pH. This work demonstrates the possibility of using self-assembling peptides for surface modification applications

    Liquid and vapor phase silanes coating for the release of thin film MEMS

    No full text
    Stiction remains one of the biggest reliability problems in the fabrication of microelectromechanical systems (MEMS). This work investigates the techniques adapted to release thin-film devices (100 nm thick) and submicron gaps MEMS. First, a CMOS compatible wet release process was developed, using nonchlorinated silanes coating providing a high hydrophobicity (contact angle in the range of 110 degrees). Second, a vapor phase release process based on the same chemistry is shown to be adequate to release thin-film beams from a silicon-on-insulator wafer, where the wet process failed. This is to the authors' knowledge the first time that an in-use stiction-free release process has been demonstrated for such thin structures. The layers resist up to 300 degrees C without damage and X-ray reflectivity confirmed that homogeneous monolayers; were obtained

    Anomalous resonance in a nanomechanical biosensor

    No full text
    The decrease in resonant frequency (−Δω(r)) of a classical cantilever provides a sensitive measure of the mass of entities attached on its surface. This elementary phenomenon has been the basis of a new class of bio-nanomechanical devices as sensing components of integrated microsystems that can perform rapid, sensitive, and selective detection of biological and biochemical entities. Based on classical analysis, there is a widespread perception that smaller sensors are more sensitive (sensitivity ≈ −0.5ω(r)/m(C), where m(C) is the mass of the cantilever), and this notion has motivated scaling of biosensors to nanoscale dimensions. In this work, we show that the response of a nanomechanical biosensor is far more complex than previously anticipated. Indeed, in contrast to classical microscale sensors, the resonant frequencies of the nanosensor may actually decrease or increase after attachment of protein molecules. We demonstrate theoretically and experimentally that the direction of the frequency change arises from a size-specific modification of diffusion and attachment kinetics of biomolecules on the cantilevers. This work may have broad impact on microscale and nanoscale biosensor design, especially when predicting the characteristics of bio-nanoelectromechanical sensors functionalized with biological capture molecules
    • …
    corecore