8 research outputs found

    Creation of cellular models and functional investigation of PARK2 Copy Number Variants (CNVs) associated with Attention-Deficit/Hyperactivity Disorder (ADHD)

    No full text
    BACKGROUND: Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders worldwide. As described in the DSM-5, ADHD is clinically heterogeneous with three main subtypes; predominant hyperactive, predominant attention deficit and combined. The severity of symptoms widely differs among the patients and interferes with the person functioning, negatively impacting social and occupational activities (American Psychiatric Association, 2013). Despite the many efforts, the etiology of the disorder is still unclear. Therefore, there is an increasing demand of models that would help elucidating the causative mechanisms of the disorder and, in parallel, would be valuable tools to discover new and effective treatments. The main goal of the study is the identification of disease specific cellular phenotypes related to Attention-Deficit/Hyperactivity Disorder (ADHD) in cellular models from patients carrying rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD (Elia et al., 2010; Jarick et al., 2014). METHODS: Human dermal fibroblast (HDF) cultures were obtained from skin punches and reprogrammed into human induced pluripotent stem cells (HiPSC) and successively induced to differentiate into HiPSC-derived dopaminergic neurons. Both HiPSC and HiPSC-derived neurons, were proven to be bona fide models by morphological analysis, RT-PCR, RT-qPCR, immunofluorescence, embryoid body assay, molecular karyotyping and dopamine level quantification. A total of six donors were selected for HiPSC and dopaminergic neuron generation: 3 adult ADHD PARK2 CNV risk carriers (1 duplication and 2 deletion carriers, 1 ADHD non-risk CNV variant carrier and 2 healthy controls). We conducted stress-response experiments (nutrient deprivation and CCCP administration) that are well known to increase PARK2 expression, on both fibroblasts and HiPSC. After assessing PARK2 gene and protein expression levels, we evaluated the gene expression of genes that are involved with different processes orchestrated by PARK2. We then performed a series of assays with a special focus on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, ROS abundance) and evaluated changing in the mitochondrial network morphology. To evaluate the effect of nicotine exposure, one of the best replicated prenatal risk factors for having a child later on diagnosed with ADHD, we treated HiPSC-derived dopaminergic neurons with smoking-relevant nicotine concentrations and evaluated PARK2 protein expression after treatment and gene expression by RNA sequencing. RESULTS: The cell models created in this study passed all the characterization tests required to assess whether the lines can be considered bona fide models without underling genotype differences. The evaluation of patho-phenotypes connected with ADHD/PARK2 CNVs in HDF and HIPSC showed that, although PARK2 gene expression was unchanged, ADHD/PARK2 CNV carriers show different PARK2 protein levels possibly implying the presence of different post-transcriptional processes. ADHD/PARK2 CNV carriers show lower levels of ATP production and basal oxygen consumption rates compared to controls, a result in line with what was already reported in ADHD cybrids cells model (Verma et al., 2016). Our experiments indicate that both the amount of reactive oxygen species (ROS) and the mitochondrial network morphology is influenced by the treatment but not by the genotype. The evaluation of nicotine effects on HiPSC-derived dopaminergic neuron from aADHD patients showed no effects on PARK2 protein levels and gene expression. ADHD/PARK2 CNVs carriers show gene ontology enrichment in modules connected with the regulation of cell growth after nicotine acute treatment. Additionally, genes connected with energy production & oxidative stress response and extracellular matrix & cell adhesion were significantly differentially expressed after nicotine treatments. CONCLUSIONS: This study points out the presence of impairment of mitochondrial energetics in cellular models derived from adult ADHD patients carrying rare CNVs within the PARK2 locus. In the last years, several studies have linked mitochondrial impairments to the etiology of psychiatric and neurodevelopmental disorders (McCann & Ross, 2018) and reported an overall increase of oxidative stress or insufficient response to oxidative damage both in children and adults with ADHD (Joseph, Zhang-James, Perl, & Faraone, 2015; Lopresti, 2015). Additionally, different groups have underlined an abnormal brain connectivity in ADHD patients in their work (Gehricke et al., 2017). Our preliminary investigation of the effects of a well-known prenatal risk factor for ADHD, nicotine gestation exposure, point out a susceptibility of the PARK2 CNVs carriers in processes involved in regulation of cell growth and in proteins connected with extracellular matrix composition and cell-adhesion molecules, all factors necessary for neuronal maturation and formation of proper neural connections (Washbourne et al., 2004). In conclusion, this study presents novel and fully validated cellular model systems to study the etiopathogenesis of ADHD based on rare CNVs in the PARK2 locus. Moreover, the identification of disease-relevant phenotypes in the model might be helpful in the future for testing new alternative medications

    Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder

    No full text
    Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder. In recent years, genetic studies have revealed several risk gene variants associated with ADHD; however, these variants could only be partly replicated and are responsible for only a fraction of the whole heritability of ADHD estimated from family and twin studies. One factor that could potentially explain the ‘missing heritability’ of ADHD is that childhood and adult or persistent ADHD could be genetically distinct subtypes, which therefore need to be analyzed separately. Another approach to identify this missing heritability could be combining the investigation of both common and rare gene risk variants as well as polygenic risk scores. Finally, environmental factors are also thought to play an important role in the etiology of ADHD, acting either independently of the genetic background or more likely in gene–environment interactions. Environmental factors might additionally convey their influence by epigenetic mechanisms, which are relatively underexplored in ADHD. The aforementioned mechanisms might also influence the response of patients with ADHD to stimulant and other ADHD medication. We conducted a selective review with a focus on risk genes of childhood and adult ADHD, gene–environment interactions, and pharmacogenetics studies on medication response in childhood and adult ADHD

    Generation of human induced pluripotent stem cell lines (hiPSC) from one bipolar disorder patient carrier of a DGKH risk haplotype and one non-risk-variant-carrier bipolar disorder patient

    No full text
    Fibroblasts were isolated from skin biopsies from two patients with bipolar I disorder. One patient was a 26 year old female carrying a risk haplotype in the DGKH (diacylglycerol kinase eta) gene and the other was a non-carrier 27 year old male. Patient fibroblasts were reprogrammed into human induced pluripotent stem cells (hiPSCs) by using a Sendai virus vector. DGKH-risk haplotype and non-risk haplotype hiPSCs showed expression of pluripotency markers and were able to differentiate into cells of the three germ layers. These cell models are useful to investigate the role of risk gene variants in bipolar disorder.Resource table.Unlabelled TableUnique stem cell lines identifierKGUi001-AKGUi002-AAlternative names of stem cell linesAR1023 hiPSC (KGUi001-A)AR1034 hiPSC (KGUi002-A)InstitutionDepartment of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, GermanyContact information of distributorDr. Sarah Kittel-Schneider, [email protected] of cell linesiPSCOriginHumanCell SourceDermal fibroblastsClonalityClonalMethod of reprogrammingSendai virusMultiline rationaleSame disease non-isogenic cell linesGene modificationNoType of modificationN/AAssociated diseaseBipolar DisorderGene/locusSNPs DGKH (rs994856/rs9525580/rs9525584 GAT haplotype; GG/AG/TT) and NON-GAT haplotype (AG/GG/CT); 13q14.11Method of modificationN/AName of transgene or resistanceN/AInducible/constitutive systemN/ADate archived/stock dateMay 2018Cell line repository/bankN/AEthical approvalEthics committee University of Würzburg, 10.06.2011, Ethical approval number 96/11Ethics committee University of Frankfurt, 04.3.2015, Ethical approval number 425/1

    Region specific up-regulation of oxytocin receptors in the opioid Oprm1-/- mouse model of autism

    No full text
    Autism spectrum disorders (ASDs) are characterized by impaired communication, social impairments and restricted and repetitive behaviors and interests. Recently altered motivation and reward processes have been suggested to participate in the physiopathology of ASDs, and μ-opioid receptors (MORs) have been investigated in relation to social reward due to their involvement in the neural circuitry of reward. Mice lacking a functional MOR gene (Oprm1-/- mice) display abnormal social behavior and major autistic-like core symptoms, making them an animal model of autism. The oxytocin (OXT) system is a key regulator of social behavior and co-operates with the opioidergic system in the modulation of social behavior. To better understand the opioid-OXT interplay in the central nervous system, we first determined the expression of the oxytocin receptor (OXTR) in the brain of WT C57BL6/J mice by quantitative autoradiography; we then evaluated OXTR regional alterations in Oprm1-/- mice. Moreover, we tested these mice in a paradigm of social behavior, the male-female social interaction test, and analyzed the effects of acute intranasal OXT treatment on their performance. In autoradiography, Oprm1-/- mice selectively displayed increased OXTR expression in the Medial Anterior Olfactory Nucleus, the Central and Medial Amygdaloid nuclei and the Nucleus Accumbens. Our behavioral results confirmed that Oprm1-/- male mice displayed social impairments, as indicated by reduced ultrasonic calls, and that these were rescued by a single intranasal administration of OXT. Taken together, our results provide evidence of an interaction between OXT and opioids in socially relevant brain areas and in the modulation of social behavior. Moreover, they suggest that the oxytocinergic system may act as a compensative mechanism to bypass and/or restore alterations in circuits linked to impaired social behavior

    Energy Metabolism Disturbances in Cell Models of PARK2 CNV Carriers with ADHD

    No full text
    The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore