340 research outputs found
Effect of periodicity in the optimization of fine tuned dipolar plasmonic structures for SERS
Arrays of nanoantennas consisting of plasmonic dipole pairs have been widely used in surface-enhanced Raman spectroscopy (SERS). Fine-tuned structures that can efficiently convert incident electromagnetic energy to excite molecules and provide enhanced detection. However, this tuning mechanism also has its disadvantages. In order to prevent the cross coupling, the distance between each individual element must be increased. This leads to low packing density values which in turn results in a reduction of the overall enhanced Raman signal when these structures are compared to broadly tuned aggregates of particles such as those obtained through metal sputtering or colloidal deposition. In this work we demonstrate through simulations and experimental work that it is possible to increase the reflected signal of an array of nanoantennas by reducing the distance between them in the direction both perpendicular and parallel to the orientation of the incident electric field. It is shown the resonant wavelength shifts in two different spectral directions depending in how the intercell distance was reduced. These resultant shifts can reduce the tuning capabilities of the structures but also can increase the SERS intensity due to close coupling of the dipole pairs. We believe that these results will enable the design and fabrication of structures possessing a greater degree of tunability together with an overall enhanced Raman signal that can rival aggregated SERS substrates
Controlling surface plasmon polaritons in transformed coordinates
Transformational optics allow for a markedly enhanced control of the
electromagnetic wave trajectories within metamaterials with interesting
applications ranging from perfect lenses to invisibility cloaks, carpets,
concentrators and rotators. Here, we present a review of curved anisotropic
heterogeneous meta-surfaces designed using the tool of transformational
plasmonics, in order to achieve a similar control for surface plasmon
polaritons in cylindrical and conical carpets, as well as cylindrical cloaks,
concentrators and rotators of a non-convex cross-section. Finally, we provide
an asymptotic form of the geometric potential for surface plasmon polaritons on
such surfaces in the limit of small curvature.Comment: 14 pages, 9 figure
Normal and lateral Casimir force: Advances and prospects
We discuss recent experimental and theoretical results on the Casimir force
between real material bodies made of different materials. Special attention is
paid to calculations of the normal Casimir force acting perpendicular to the
surface with the help of the Lifshitz theory taking into account the role of
free charge carriers. Theoretical results for the thermal Casimir force acting
between metallic, dielectric and semiconductor materials are presented and
compared with available experimental data. Main attention is concentrated on
the possibility to control the magnitude and sign of the Casimir force for
applications in nanotechnology. In this respect we consider experiments on the
optical modulation of the Casimir force between metal and semiconductor test
bodies with laser light. Another option is the use of ferromagnetic materials,
specifically, ferromagnetic dielectrics. Under some conditions this allows to
get Casimir repulsion. The lateral Casimir force acting between sinusoidally
corrugated surfaces can be considered as some kind of noncontact friction
caused by zero-point oscillations of the electromagnetic field. Recent
experiments and computations using the exact theory have demonstrated the role
of diffraction-type effects in this phenomenon and the possibility to get
asymmetric force profiles. Conclusion is made that the Casimir force may play
important role in the operation of different devices on the nanoscale.Comment: 27 pages, 13 figures; Invited keynote lecture at the 2nd
International Conference on Science of Friction, Ise-Shima, Mie, Japan,
September 13-18, 2010; to appear in J. Phys.: Conf. Se
Controlling light-with-light without nonlinearity
According to Huygens' superposition principle, light beams traveling in a
linear medium will pass though one another without mutual disturbance. Indeed,
it is widely held that controlling light signals with light requires intense
laser fields to facilitate beam interactions in nonlinear media, where the
superposition principle can be broken. We demonstrate here that two coherent
beams of light of arbitrarily low intensity can interact on a metamaterial
layer of nanoscale thickness in such a way that one beam modulates the
intensity of the other. We show that the interference of beams can eliminate
the plasmonic Joule losses of light energy in the metamaterial or, in contrast,
can lead to almost total absorbtion of light. Applications of this phenomenon
may lie in ultrafast all-optical pulse-recovery devices, coherence filters and
THz-bandwidth light-by-light modulators
An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons
We report the design, fabrication and characterization of a periodic grating
of shallow rectangular grooves in a metallic film with the goal of maximizing
the coupling efficiency of an extended plane wave (PW) of visible or
near-infrared light into a single surface plasmon polariton (SPP) mode on a
flat metal surface. A PW-to-SPP power conversion factor > 45 % is demonstrated
at a wavelength of 780 nm, which exceeds by an order of magnitude the
experimental performance of SPP grating couplers reported to date at any
wavelength. Conversion efficiency is maximized by matching the dissipative SPP
losses along the grating surface to the local coupling strength. This critical
coupling condition is experimentally achieved by tailoring the groove depth and
width using a focused ion beam.Comment: The final publication is available at http://www.springerlink.com.
http://dx.doi.org/10.1007/s11468-011-9303-
An invisibility cloak using silver nanowires
In this paper, we use the parameter retrieval method together with an
analytical effective medium approach to design a well-performed invisible
cloak, which is based on an empirical revised version of the reduced cloak. The
designed cloak can be implemented by silver nanowires with elliptical
cross-sections embedded in a polymethyl methacrylate host. This cloak is
numerically proved to be robust for both the inner hidden object as well as
incoming detecting waves, and is much simpler thus easier to manufacture when
compared with the earlier proposed one [Nat. Photon. 1, 224 (2007)].Comment: 7 pages, 4 figures, 2 table
Electromagnetic field correlations near a surface with a nonlocal optical response
The coherence length of the thermal electromagnetic field near a planar
surface has a minimum value related to the nonlocal dielectric response of the
material. We perform two model calculations of the electric energy density and
the field's degree of spatial coherence. Above a polar crystal, the lattice
constant gives the minimum coherence length. It also gives the upper limit to
the near field energy density, cutting off its divergence. Near an
electron plasma described by the semiclassical Lindhard dielectric function,
the corresponding length scale is fixed by plasma screening to the Thomas-Fermi
length. The electron mean free path, however, sets a larger scale where
significant deviations from the local description are visible.Comment: 15 pages, 7 figure files (.eps), \documentclass[global]{svjour},
accepted in special issue "Optics on the Nanoscale" (Applied Physics B, eds.
V. Shalaev and F. Tr\"ager
Photon Management in Two-Dimensional Disordered Media
Elaborating reliable and versatile strategies for efficient light coupling
between free space and thin films is of crucial importance for new technologies
in energy efficiency. Nanostructured materials have opened unprecedented
opportunities for light management, notably in thin-film solar cells. Efficient
coherent light trapping has been accomplished through the careful design of
plasmonic nanoparticles and gratings, resonant dielectric particles and
photonic crystals. Alternative approaches have used randomly-textured surfaces
as strong light diffusers to benefit from their broadband and wide-angle
properties. Here, we propose a new strategy for photon management in thin films
that combines both advantages of an efficient trapping due to coherent optical
effects and broadband/wide-angle properties due to disorder. Our approach
consists in the excitation of electromagnetic modes formed by multiple light
scattering and wave interference in two-dimensional random media. We show, by
numerical calculations, that the spectral and angular responses of thin films
containing disordered photonic patterns are intimately related to the in-plane
light transport process and can be tuned through structural correlations. Our
findings, which are applicable to all waves, are particularly suited for
improving the absorption efficiency of thin-film solar cells and can provide a
novel approach for high-extraction efficiency light-emitting diodes
Surface Plasmon Polariton Excitation in Metallic Layer Via Surface Relief Gratings in Photoactive Polymer Studied by the Finite-Difference Time-Domain Method
We performed numerical investigations of surface plasmon excitation and propagation in structures made of a photochromic polymer layer deposited over a metal surface using the finite-difference time-domain method. We investigated the process of light coupling into surface plasmon polariton excitation using surface relief gratings formed on the top of a polymer layer and compared it with the coupling via rectangular ridges grating made directly in the metal layer. We also performed preliminary studies on the influence of refractive index change of photochromic polymer on surface plasmon polariton propagation conditions
- …