340 research outputs found

    Effect of periodicity in the optimization of fine tuned dipolar plasmonic structures for SERS

    Get PDF
    Arrays of nanoantennas consisting of plasmonic dipole pairs have been widely used in surface-enhanced Raman spectroscopy (SERS). Fine-tuned structures that can efficiently convert incident electromagnetic energy to excite molecules and provide enhanced detection. However, this tuning mechanism also has its disadvantages. In order to prevent the cross coupling, the distance between each individual element must be increased. This leads to low packing density values which in turn results in a reduction of the overall enhanced Raman signal when these structures are compared to broadly tuned aggregates of particles such as those obtained through metal sputtering or colloidal deposition. In this work we demonstrate through simulations and experimental work that it is possible to increase the reflected signal of an array of nanoantennas by reducing the distance between them in the direction both perpendicular and parallel to the orientation of the incident electric field. It is shown the resonant wavelength shifts in two different spectral directions depending in how the intercell distance was reduced. These resultant shifts can reduce the tuning capabilities of the structures but also can increase the SERS intensity due to close coupling of the dipole pairs. We believe that these results will enable the design and fabrication of structures possessing a greater degree of tunability together with an overall enhanced Raman signal that can rival aggregated SERS substrates

    Controlling surface plasmon polaritons in transformed coordinates

    Full text link
    Transformational optics allow for a markedly enhanced control of the electromagnetic wave trajectories within metamaterials with interesting applications ranging from perfect lenses to invisibility cloaks, carpets, concentrators and rotators. Here, we present a review of curved anisotropic heterogeneous meta-surfaces designed using the tool of transformational plasmonics, in order to achieve a similar control for surface plasmon polaritons in cylindrical and conical carpets, as well as cylindrical cloaks, concentrators and rotators of a non-convex cross-section. Finally, we provide an asymptotic form of the geometric potential for surface plasmon polaritons on such surfaces in the limit of small curvature.Comment: 14 pages, 9 figure

    Normal and lateral Casimir force: Advances and prospects

    Full text link
    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces can be considered as some kind of noncontact friction caused by zero-point oscillations of the electromagnetic field. Recent experiments and computations using the exact theory have demonstrated the role of diffraction-type effects in this phenomenon and the possibility to get asymmetric force profiles. Conclusion is made that the Casimir force may play important role in the operation of different devices on the nanoscale.Comment: 27 pages, 13 figures; Invited keynote lecture at the 2nd International Conference on Science of Friction, Ise-Shima, Mie, Japan, September 13-18, 2010; to appear in J. Phys.: Conf. Se

    Controlling light-with-light without nonlinearity

    Full text link
    According to Huygens' superposition principle, light beams traveling in a linear medium will pass though one another without mutual disturbance. Indeed, it is widely held that controlling light signals with light requires intense laser fields to facilitate beam interactions in nonlinear media, where the superposition principle can be broken. We demonstrate here that two coherent beams of light of arbitrarily low intensity can interact on a metamaterial layer of nanoscale thickness in such a way that one beam modulates the intensity of the other. We show that the interference of beams can eliminate the plasmonic Joule losses of light energy in the metamaterial or, in contrast, can lead to almost total absorbtion of light. Applications of this phenomenon may lie in ultrafast all-optical pulse-recovery devices, coherence filters and THz-bandwidth light-by-light modulators

    An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons

    Full text link
    We report the design, fabrication and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor > 45 % is demonstrated at a wavelength of 780 nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.Comment: The final publication is available at http://www.springerlink.com. http://dx.doi.org/10.1007/s11468-011-9303-

    An invisibility cloak using silver nanowires

    Full text link
    In this paper, we use the parameter retrieval method together with an analytical effective medium approach to design a well-performed invisible cloak, which is based on an empirical revised version of the reduced cloak. The designed cloak can be implemented by silver nanowires with elliptical cross-sections embedded in a polymethyl methacrylate host. This cloak is numerically proved to be robust for both the inner hidden object as well as incoming detecting waves, and is much simpler thus easier to manufacture when compared with the earlier proposed one [Nat. Photon. 1, 224 (2007)].Comment: 7 pages, 4 figures, 2 table

    Electromagnetic field correlations near a surface with a nonlocal optical response

    Full text link
    The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field's degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z31/z^3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas-Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.Comment: 15 pages, 7 figure files (.eps), \documentclass[global]{svjour}, accepted in special issue "Optics on the Nanoscale" (Applied Physics B, eds. V. Shalaev and F. Tr\"ager

    Photon Management in Two-Dimensional Disordered Media

    Full text link
    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly-textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists in the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a novel approach for high-extraction efficiency light-emitting diodes

    Surface Plasmon Polariton Excitation in Metallic Layer Via Surface Relief Gratings in Photoactive Polymer Studied by the Finite-Difference Time-Domain Method

    Get PDF
    We performed numerical investigations of surface plasmon excitation and propagation in structures made of a photochromic polymer layer deposited over a metal surface using the finite-difference time-domain method. We investigated the process of light coupling into surface plasmon polariton excitation using surface relief gratings formed on the top of a polymer layer and compared it with the coupling via rectangular ridges grating made directly in the metal layer. We also performed preliminary studies on the influence of refractive index change of photochromic polymer on surface plasmon polariton propagation conditions
    • …
    corecore