20 research outputs found

    Bub1-Mediated Adaptation of the Spindle Checkpoint

    Get PDF
    During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore–microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1 in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest

    Mad3 KEN Boxes Mediate both Cdc20 and Mad3 Turnover, and Are Critical for the Spindle Checkpoint

    Get PDF
    Mitotic progression is controlled by proteolytic destruction of securin and cyclin. The mitotic E3 ubiquitin ligase, known as the anaphase promoting complex or cyclosome (APC/C), in partnership with its activators Cdc20p and Cdh1p, targets these proteins for degradation. In the presence of defective kinetochore-microtubule interactions, APC/C(Cdc20) is inhibited by the spindle checkpoint, thereby delaying anaphase onset and providing more time for spindle assembly. Cdc20p interacts directly with Mad2p, and its levels are subject to careful regulation, but the precise mode(s) of APC/C( Cdc20) inhibition remain unclear. The mitotic checkpoint complex (MCC, consisting of Mad3p, Mad2p, Bub3p and Cdc20p in budding yeast) is a potent APC/C inhibitor. Here we focus on Mad3p and how it acts, in concert with Mad2p, to efficiently inhibit Cdc20p. We identify and analyse the function of two motifs in Mad3p, KEN30 and KEN296, which are conserved from yeast Mad3p to human BubR1. These KEN amino acid sequences resemble ‘degron’ signals that confer interaction with APC/C activators and target proteins for degradation. We show that both Mad3p KEN boxes are necessary for spindle checkpoint function. Mutation of KEN30 abolished MCC formation and stabilised Cdc20p in mitosis. In addition, mutation of Mad3-KEN30, APC/C subunits, or Cdh1p, stabilised Mad3p in G1, indicating that the N-terminal KEN box could be a Mad3p degron. To determine the significance of Mad3p turnover, we analysed the consequences of MAD3 overexpression and found that four-fold overproduction of Mad3p led to chromosome bi-orientation defects and significant chromosome loss during recovery from anti-microtubule drug induced checkpoint arrest. In conclusion, Mad3p KEN30 mediates interactions that regulate the proteolytic turnover of Cdc20p and Mad3p, and the levels of both of these proteins are critical for spindle checkpoint signaling and high fidelity chromosome segregation

    A quantitative systems view of the spindle assembly checkpoint

    Get PDF
    The idle assembly checkpoint acts to delay chromosome segregation until all duplicated sister chromatids are captured by the mitotic spindle. This pathway ensures that each daughter cell receives a complete copy of the genome. The high fidelity and robustness of this process have made it a subject of intense study in both the experimental and computational realms. A significant number of checkpoint proteins have been identified but how they orchestrate the communication between local spindle attachment and global cytoplasmic signalling to delay segregation is not yet understood. Here, we propose a systems view of the spindle assembly checkpoint to focus attention on the key regulators of the dynamics of this pathway. These regulators in turn have been the subject of detailed cellular measurements and computational modelling to connect molecular function to the dynamics of spindle assembly checkpoint signalling. A review of these efforts reveals the insights provided by such approaches and underscores the need for further interdisciplinary studies to reveal in full the quantitative underpinnings of this cellular control pathway

    Mature Modifications and Sexual Dimorphism

    Full text link
    Allometric growth between different parts of the shell often hampers the identification of mollusk shells, particularly in such cases where preadult shell growth varies strongly. Especially in gastropods, the terminal aperture is often less variable and yields morphological information essential for species determination (e.g. Vermeij 1993; Urdy et al. 2010a, b). In fossil mollusk shells, the adult aperture (peristome)is often missing, partially due to an early death, and partially due to destructive processes, which occurred post mortem (taphonomy). Therefore, the entire shell ontogeny is known only from a small fraction of all ammonoid taxa (e.g., Landman et al. 2012). Nevertheless, knowledge of the adult shell of ammonoids is very important since it can yield morphological information essential for systematics and for the reconstruction of various aspects of their paleobiology

    Tumour Necrosis Factor α Antagonists in the Treatment of Rheumatoid Arthritis: An Immunological Perspective.

    No full text
    Rheumatoid arthritis (RA) is one of the most prevalent autoimmune conditions, affecting approximately 1 % of the adult population. It is associated with decreased quality of life and considerable morbidity and mortality. Various inflammatory cells, including macrophages, neutrophils, mast cells, natural killer cells, B and T cells and stromal cells play key pathophysiological roles in joint inflammation and RA progression. Several cytokines, including interleukin (IL)-1α and/or IL-1β, and tumour necrosis factor (TNF)-α, are involved at each stage of RA pathogenesis; namely, by augmenting autoimmunity, sustaining long-term inflammatory synovitis and promoting joint damage. Different cell types are involved in RA pathogenesis through upregulation of several cytokine and soluble pro-inflammatory mediators. As early as the late 1980s, TNF had been identified as a potential target in RA. Five anti-TNF drugs, infliximab, adalimumab, certolizumab pegol, etanercept and golimumab, are now approved for the treatment of RA in various countries. All are bivalent monoclonal antibodies, with the exception of the monovalent certolizumab and etanercept, which is an engineered dimeric receptor. Although all react with and neutralise soluble TNF in vitro, structural differences in the molecules may contribute to differences in their therapeutic effects and the occurrence of side effects. Pegylated certolizumab permits once-monthly dosing. Other mechanisms of action proposed to be important for the efficacy of anti-TNF agents are as follows: induction of apoptosis of both monocytes and T cells; neutralization of membrane TNF; antibody-dependent cell-mediated and complement-dependent cytotoxicity; and reverse signaling via membrane TNF

    The spindle assembly checkpoint: clock or domino?

    No full text
    In each cell division, the newly duplicated chromosomes must be evenly distributed between the sister cells. Errors in this process during meiosis or mitosis are equally fatal: improper segregation of the chromosome 21 during human meiosis leads to Down syndrome (Conley, Aneuploidy: etiology and mechanisms, pp 35-89, 1985), whereas in somatic cells, aneuploidy has been linked to carcinogenesis, by unbalancing the ratio of oncogenes and tumor suppressors (Holland and Cleveland, Nat Rev Mol Cell Biol 10(7):478-487, 2009; Yuen et al., Curr Opin Cell Biol 17(6):576-582, 2005). Eukaryotic cells have developed a mechanism, known as the spindle assembly checkpoint, to detect erroneous attachment of chromosomes to the mitotic/meiotic spindle and delay the cell cycle to give enough time to resolve these defects. Research in the last 20 years, has demonstrated that the spindle assembly checkpoint is not only a pure checkpoint pathway, but plays a constitutive role in every cell cycle. Here, we review our current knowledge of how the spindle assembly checkpoint is integrated into the cell cycle machinery, and discuss some of the questions that have to be addressed in the future

    Spindle checkpoint-independent inhibition of mitotic chromosome segregation by Drosophila Mps1

    Full text link
    Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1`s significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation
    corecore