12 research outputs found

    Myofibroblast androgen receptor expression determines cell survival in co-cultures of myofibroblasts and prostate cancer cells in vitro.

    Get PDF
    Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotestosterone (DHT) inhibited the proliferation of the PShTert-AR myofibroblasts, thereby reducing the extent of their inhibitory effect on cancer cell growth. These results suggest loss of stromal AR would favour prostate cancer cell growth in vivo, providing an explanation for the clinical observation that reduced stromal AR is associated with a poorer outcome

    Anti-cancer effects of an optimised combination of ginsenoside rg3 epimers on triple negative breast cancer models

    Full text link
    Key problems of chemotherapies, as the mainstay of treatment for triple-negative breast cancer (TNBC), are toxicity and development of tumour resistance. Using response surface methodology, we previously optimised the combination of epimers of ginsenoside Rg3 (Rg3) for anti-angiogenic action. Here, we show that the optimised combination of 50 µM SRg3 and 25 µM RRg3 (C3), derived from an RSM model of migration of TNBC cell line MDA-MB-231, inhibited migration of MDA-MB-231 and HCC1143, in 2D and 3D migration assays (p < 0.0001). C3 inhibited mammosphere formation efficiency in both cell lines and decreased the CD44+ stem cell marker in the mammospheres. Molecular docking predicted that Rg3 epimers had a better binding score with IGF-1R than with EGFR, HER-2 or PDGFR, and predicted an mTOR inhibitory function of Rg3. C3 affected the signalling of AKT in MDA-MB-231 and HCC1143 mammospheres. In a mouse model of metastatic TNBC, an equivalent dose of C3 (23 mg/kg SRg3 + 11 mg/kg RRg3) or an escalated dose of 46 mg/kg SRg3 + 23 mg/kg RRg3 was administered to NSG mice bearing MDA-MB-231-Luc cells. Calliper and IVIS spectrum measurement of the primary and secondary tumour showed that the treatment shrunk the primary tumour and decreased the load of metastasis in mice. In conclusion, this combination of Rg3 epimers showed promising results as a potential treatment option for TNBC patients

    Anti-angiogenic properties of ginsenoside rg3 epimers: In vitro assessment of single and combination treatments

    Full text link
    Tumour angiogenesis plays a key role in tumour growth and progression. The application of current anti-angiogenic drugs is accompanied by adverse effects and drug resistance. Therefore, finding safer effective treatments is needed. Ginsenoside Rg3 (Rg3) has two epimers, 20(S)-Rg3 (SRg3) and 20(R)-Rg3 (RRg3), with stereoselective activities. Using response surface methodology, we optimised a combination of these two epimers for the loop formation of human umbilical vein endothelial cell (HUVEC). The optimised combination (C3) was tested on HUVEC and two murine endothelial cell lines. C3 significantly inhibited the loop formation, migration, and proliferation of these cells, inducing apoptosis in HUVEC and cell cycle arrest in all of the cell lines tested. Using molecular docking and vascular endothelial growth factor (VEGF) bioassay, we showed that Rg3 has an allosteric modulatory effect on vascular endothelial growth factor receptor 2 (VEGFR2). C3 also decreased the VEGF expression in hypoxic conditions, decreased the expression of aquaporin 1 and affected AKT signaling. The proteins that were mostly affected after C3 treatment were those related to mammalian target of rapamycin (mTOR). Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) was one of the important targets of C3, which was affected in both hypoxic and normoxic conditions. In conclusion, these results show the potential of C3 as a novel anti-angiogenic dru

    Bacopasides I and II act in synergy to inhibit the growth, migration and invasion of breast cancer cell lines

    Get PDF
    Bacopaside (bac) I and II are triterpene saponins purified from the medicinal herb Bacopa monnieri. Previously, we showed that bac II reduced endothelial cell migration and tube formation and induced apoptosis in colorectal cancer cell lines. The aim of the current study was to examine the effects of treatment with combined doses of bac I and bac II using four cell lines representative of the breast cancer subtypes: triple negative (MDA-MB-231), estrogen receptor positive (T47D and MCF7) and human epidermal growth factor receptor 2 (HER2) positive (BT-474). Drug treatment outcome measures included cell viability, proliferation, cell cycle, apoptosis, migration, and invasion assays. Relationships were analysed by one- and two-way analysis of variance with Bonferroni post-hoc analysis. Combined doses of bac I and bac II, each below their half maximal inhibitory concentration (IC50), were synergistic and reduced the viability and proliferation of the four breast cancer cell lines. Cell loss occurred at the highest dose combinations and was associated with G2/M arrest and apoptosis. Migration in the scratch wound assay was significantly reduced at apoptosis-inducing combinations, but also at non-cytotoxic combinations, for MDA-MB-231 and T47D (p < 0.0001) and BT-474 (p = 0.0003). Non-cytotoxic combinations also significantly reduced spheroid invasion of MDA-MB-231 cells by up to 97% (p < 0.0001). Combining bac I and II below their IC50 reduced the viability, proliferation, and migration and invasiveness of breast cancer cell lines, suggesting synergy between bac I and I

    Reduced aquaporin-1 transcript expression in colorectal carcinoma is associated with promoter hypermethylation

    Get PDF
    Aquaporin-1 (AQP1) is a homo-tetrameric transmembrane protein that facilitates rapid movement of water and ions across cell membranes. The clinical significance of AQP1 expression in colorectal carcinoma (CRC) is controversial. The aim of this study was to investigate the prognostic significance of AQP1 transcript expression and the association between expression and promoter methylation in normal colonic mucosa, CRC tissues and cell lines. Analysis of publicly available datasets from The Cancer Genome Atlas revealed that AQP1 expression was significantly decreased in CRC compared to normal mucosa (12.7 versus 33.3 respectively, P P = 0.0039) or II (10.9; P = 0.0023), and in patients with lymph node metastasis compared to those without (13.9 versus 11.3 respectively, P = 0.0023). Elevated expression was associated with decreased overall survival with univariate (Cox Proportional Hazard Ratio 1.60, 95% confidence interval 1.05–2.42, P = 0.028), but not multivariable analysis when considering the confounders stage and age. Analysis of HumanMethylation450 data demonstrated that AQP1 promoter methylation was significantly increased in CRC compared to normal mucosa. Analysis of CRC tissues and cell lines strongly suggested that methylation was associated with decreased expression. BRAFV600E mutation alone did not explain the increase in methylation. In conclusion, AQP1 transcript expression was decreased in CRC compared to normal mucosa, and this was associated with AQP1 promoter hypermethylation. AQP1 transcript expression increased with advanced disease but was not an independent prognostic indicator.</p

    In vitro synergistic inhibition of HT-29 proliferation and 2H-11 and HUVEC tubulogenesis by bacopaside I and II is associated with Ca²⁺ flux and loss of plasma membrane integrity

    Get PDF
    We previously showed how triterpene saponin bacopaside (bac) II, purified from the medicinal herb Bacopa monnieri, induced cell death in colorectal cancer cell lines and reduced endothelial cell migration and tube formation, and further demonstrated a synergistic effect of a combination of bac I and bac II on the inhibition of breast cancer cell line growth. Here, we assessed the effects of bac I and II on the colorectal cancer HT-29 cell line, and mouse (2H-11) and human umbilical vein endothelial cell (HUVEC) lines, measuring outcomes including cell viability, proliferation, migration, tube formation, apoptosis, cytosolic Ca2+ levels and plasma membrane integrity. Combined bac I and II, each applied at concentrations below IC50 values, caused a synergistic reduction of the viability and proliferation of HT-29 and endothelial cells, and impaired the migration of HT-29 and tube formation of endothelial cells. A significant enhancement of apoptosis was induced only in HUVEC, although an increase in cytosolic Ca2+ was detected in all three cell lines. Plasma membrane integrity was compromised in 2H-11 and HUVEC, as determined by an increase in propidium iodide staining, which was preceded by Ca2+ flux. These in vitro findings support further research into the mechanisms of action of the combined compounds for potential clinical use

    Stereoselective anti-cancer activities of ginsenoside rg3 on triple negative breast cancer cell models

    Get PDF
    Ginsenoside Rg3 (Rg3) has two epimers, 20(S)-ginsenoside Rg3 (SRg3) and 20(R)-ginsenoside Rg3 (RRg3), and while Rg3 itself has been reported to have anti-cancer properties, few studies have been reported on the anti-cancer effects of the different epimers. The aim was to investigate the stereoselective effects of the Rg3 epimers on triple negative breast cancer (TNBC) cell lines, tested using cell-based assays for proliferation, apoptosis, cell cycle arrest, migration and invasion. Molecular docking showed that Rg3 interacted with the aquaporin 1 (AQP1) water channel (binding score −9.4 kJ mol−1). The Xenopus laevis oocyte expression system was used to study the effect of Rg3 epimers on the AQP1 water permeability. The AQP1 expression in TNBC cell lines was compared with quantitative-polymerase chain reaction (PCR). The results showed that only SRg3 inhibited the AQP1 water flux and inhibited the proliferation of MDA-MB-231 (100 μM), due to cell cycle arrest at G0/G1. SRg3 inhibited the chemoattractant-induced migration of MDA-MB-231. The AQP1 expression in MDA-MB-231 was higher than in HCC1143 or DU4475 cell lines. These results suggest a role for AQP1 in the proliferation and chemoattractant-induced migration of this cell line. Compared to SRg3, RRg3 had more potency and efficacy, inhibiting the migration and invasion of MDA-MB-231. Rg3 has stereoselective anti-cancer effects in the AQP1 high-expressing cell line MDA-MB-231
    corecore