152 research outputs found

    Detection of peptide-based nanoparticles in blood plasma by ELISA

    Get PDF
    Aims: The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods: A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results: The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl meth-acrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions: We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions

    Facile Preparation of Organic Nanoparticles by Interfacial Cross-Linking of Reverse Micelles and Template Synthesis of Subnanometer Au−Pt Nanoparticles

    Get PDF
    A single- and a double-tailed cationic surfactant with the triallylammonium headgroup formed reverse micelles (RMs) in heptane/chloroform containing a small amount of water. The reverse micelles were cross-linked at the interface upon UV irradiation in the presence of a water-soluble dithiol cross-linker and a photoinitiator. The resulting interfacially cross-linked reverse micelles (ICRMs) of the single-tailed surfactant aggregated in a solvent-dependent fashion, whereas those of the double-tailed were identical in size as the corresponding RMs. The ICRMs could extract anionic metal salts, such as AuCl4− and PtCl62−, from water into the organic phase. Au and Pt metal nanoparticles were produced upon reduction of metal salts. The covalent nature of the ICRMs made the template synthesis highly predictable, with the size of the metal particles controlled by the amount of the metal salt and the method of reduction. Nanoalloys were obtained by combining two metal precursors in the same reaction. Reduction of the ICRM-entrapped aurate also occurred without any external reducing agents, and the gold nanoparticles differed dramatically from those obtained through sodium borohydride reduction. The same template allowed the preparation of luminescent Au4, Au8, and Au13−Au23 clusters, as well as gold nanoparticles several nanometers in size, simply by using different amounts of gold precursor and reducing conditions
    • …
    corecore