5 research outputs found

    MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition

    Get PDF
    African languages are spoken by over a billion people, but are underrepresented in NLP research and development. The challenges impeding progress include the limited availability of annotated datasets, as well as a lack of understanding of the settings where current methods are effective. In this paper, we make progress towards solutions for these challenges, focusing on the task of named entity recognition (NER). We create the largest human-annotated NER dataset for 20 African languages, and we study the behavior of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, demonstrating that the choice of source language significantly affects performance. We show that choosing the best transfer language improves zero-shot F1 scores by an average of 14 points across 20 languages compared to using English. Our results highlight the need for benchmark datasets and models that cover typologically-diverse African languages

    Treating Rhythmic and Periodic EEG Patterns in Comatose Survivors of Cardiac Arrest

    No full text
    BACKGROUND: Whether the treatment of rhythmic and periodic electroencephalographic (EEG) patterns in comatose survivors of cardiac arrest improves outcomes is uncertain. METHODS: We conducted an open-label trial of suppressing rhythmic and periodic EEG patterns detected on continuous EEG monitoring in comatose survivors of cardiac arrest. Patients were randomly assigned in a 1:1 ratio to a stepwise strategy of antiseizure medications to suppress this activity for at least 48 consecutive hours plus standard care (antiseizure-treatment group) or to standard care alone (control group); standard care included targeted temperature management in both groups. The primary outcome was neurologic outcome according to the score on the Cerebral Performance Category (CPC) scale at 3 months, dichotomized as a good outcome (CPC score indicating no, mild, or moderate disability) or a poor outcome (CPC score indicating severe disability, coma, or death). Secondary outcomes were mortality, length of stay in the intensive care unit (ICU), and duration of mechanical ventilation. RESULTS: We enrolled 172 patients, with 88 assigned to the antiseizure-treatment group and 84 to the control group. Rhythmic or periodic EEG activity was detected a median of 35 hours after cardiac arrest; 98 of 157 patients (62%) with available data had myoclonus. Complete suppression of rhythmic and periodic EEG activity for 48 consecutive hours occurred in 49 of 88 patients (56%) in the antiseizure-treatment group and in 2 of 83 patients (2%) in the control group. At 3 months, 79 of 88 patients (90%) in the antiseizure-treatment group and 77 of 84 patients (92%) in the control group had a poor outcome (difference, 2 percentage points; 95% confidence interval, -7 to 11; P = 0.68). Mortality at 3 months was 80% in the antiseizure-treatment group and 82% in the control group. The mean length of stay in the ICU and mean duration of mechanical ventilation were slightly longer in the antiseizure-treatment group than in the control group. CONCLUSIONS: In comatose survivors of cardiac arrest, the incidence of a poor neurologic outcome at 3 months did not differ significantly between a strategy of suppressing rhythmic and periodic EEG activity with the use of antiseizure medication for at least 48 hours plus standard care and standard care alone. (Funded by the Dutch Epilepsy Foundation; TELSTAR ClinicalTrials.gov number, NCT02056236.)

    Abstracts

    No full text
    corecore