1,103 research outputs found

    NA49/NA61: results and plans on beam energy and system size scan at the CERN SPS

    Full text link
    This paper presents results and plans of the NA49 and NA61/SHINE experiments at the CERN Super Proton Synchrotron concerning the study of relativistic nucleus-nucleus interactions. First, the NA49 evidence for the energy threshold of creating quark-gluon plasma, the onset of deconfinement, in central lead-lead collisions around 30A GeV is reviewed. Then the status of the NA61/SHINE systematic study of properties of the onset of deconfinement is presented. Second, the search for the critical point of strongly interacting matter undertaken by both experiments is discussed. NA49 measured large fluctuations at the top SPS energy, 158A GeV, in collisions of light and medium size nuclei. They seem to indicate that the critical point exists and is located close to baryonic chemical potential of about 250 MeV. The NA61/SHINE beam energy and system size scan started in 2009 will provide evidence for the existence of the critical point or refute the interpretation of the NA49 fluctuation data in terms of the critical point.Comment: 11 pages, invited talk at Quark Matter 201

    Dual character of the electronic structure in YBa2Cu4O8: conduction bands of CuO2 planes and CuO chains

    Full text link
    We use microprobe Angle-Resolved Photoemission Spectroscopy (muARPES) to separately investigate the electronic properties of CuO2 planes and CuO chains in the high temperature superconductor, YBa2Cu4O8. In the CuO2 planes, a two dimensional (2D) electronic structure with nearly momentum independent bilayer splitting is observed. The splitting energy is 150 meV at (pi,0), almost 50% larger than in Bi2Sr2CaCu2O(8+d) and the electron scattering at the Fermi level in the bonding band is about 1.5 times stronger than in the antibonding band. The CuO chains have a quasi one dimensional (1D) electronic structure. We observe two 1D bands separated by ~ 550meV: a conducting band and an insulating band with an energy gap of ~ 240meV. We find that the conduction electrons are well confined within the planes and chains with a non-trivial hybridization.Comment: 4 pages, 4 figure

    Using electricity storage to reduce greenhouse gas emissions

    Get PDF
    While energy storage is key to increasing the penetration of variable renewables, the near-term effects of storage on greenhouse gas emissions are uncertain. Several studies have shown that storage operation can increase emissions even if the storage has 100% turnaround efficiency. Furthermore, previous studies have relied on national-level data and given very little attention to the impacts of storage on emissions at local scales. This is an important omission, as carbon intensities can vary very significantly at sub-national scales. We introduce a novel approach to calculating regional marginal emissions factors, based on a validated power system model and regression analysis. The techniques are used to investigate the impacts of storage operation on CO2 emissions in Great Britain in 2019, under a range of operating scenarios. It is found that there are significant regional differences in storage emissions factors, with storage tending to increase emissions when used for wind balancing in areas with little wind curtailment. In contrast, the greatest emissions reductions are achieved when charging storage with otherwise-curtailed renewables and discharging to reduce peak demands in areas consuming high volumes of fossil fuel power. Over all regions and operating modes studied, the difference between the highest reduction in emissions and the highest increase in emissions is considerable, at 741 gCO2 per kWh discharged. We conclude that power system regulators should pay increased attention to the impact of storage operation on system CO2 emissions.</p

    Using electricity storage to reduce greenhouse gas emissions

    Get PDF
    While energy storage is key to increasing the penetration of variable renewables, the near-term effects of storage on greenhouse gas emissions are uncertain. Several studies have shown that storage operation can increase emissions even if the storage has 100% turnaround efficiency. Furthermore, previous studies have relied on national-level data and given very little attention to the impacts of storage on emissions at local scales. This is an important omission, as carbon intensities can vary very significantly at sub-national scales. We introduce a novel approach to calculating regional marginal emissions factors, based on a validated power system model and regression analysis. The techniques are used to investigate the impacts of storage operation on CO2 emissions in Great Britain in 2019, under a range of operating scenarios. It is found that there are significant regional differences in storage emissions factors, with storage tending to increase emissions when used for wind balancing in areas with little wind curtailment. In contrast, the greatest emissions reductions are achieved when charging storage with otherwise-curtailed renewables and discharging to reduce peak demands in areas consuming high volumes of fossil fuel power. Over all regions and operating modes studied, the difference between the highest reduction in emissions and the highest increase in emissions is considerable, at 741 gCO2 per kWh discharged. We conclude that power system regulators should pay increased attention to the impact of storage operation on system CO2 emissions.</p

    Origins of large critical temperature variations in single layer cuprates

    Full text link
    We study the electronic structures of two single layer superconducting cuprates, Tl2_2Ba2_2CuO6+ÎŽ_{6+\delta} (Tl2201) and (Bi1.35_{1.35}Pb0.85_{0.85})(Sr1.47_{1.47}La0.38_{0.38})CuO6+ÎŽ_{6+\delta} (Bi2201) which have very different maximum critical temperatures (90K and 35K respectively) using Angular Resolved Photoemission Spectroscopy (ARPES). We are able to identify two main differences in their electronic properties. First, the shadow band that is present in double layer and low Tc,max_{c,max} single layer cuprates is absent in Tl2201. Recent studies have linked the shadow band to structural distortions in the lattice and the absence of these in Tl2201 may be a contributing factor in its Tc,max_{c,max}.Second, Tl2201's Fermi surface (FS) contains long straight parallel regions near the anti-node, while in Bi2201 the anti-nodal region is much more rounded. Since the size of the superconducting gap is largest in the anti-nodal region, differences in the band dispersion at the anti-node may play a significant role in the pairing and therefore affect the maximum transition temperature.Comment: 6 pages, 5 figures,1 tabl

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure

    Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section

    Full text link
    This paper focuses on the study of existence and uniqueness of distributional and classical solutions to the Cauchy Boltzmann problem for the soft potential case assuming Sn−1S^{n-1} integrability of the angular part of the collision kernel (Grad cut-off assumption). For this purpose we revisit the Kaniel--Shinbrot iteration technique to present an elementary proof of existence and uniqueness results that includes large data near a local Maxwellian regime with possibly infinite initial mass. We study the propagation of regularity using a recent estimate for the positive collision operator given in [3], by E. Carneiro and the authors, that permits to study such propagation without additional conditions on the collision kernel. Finally, an LpL^{p}-stability result (with 1≀p≀∞1\leq p\leq\infty) is presented assuming the aforementioned condition.Comment: 19 page

    The ICARUS T600 Experiment in the Gran Sasso Underground Laboratory

    Get PDF
    With a mass of about 600 tons of Liquid Argon (LAr), the ICARUS T600 detector is the biggest, up to now, LAr Time Projection Chamber (TPC). Following its successful test run, on the Earth surface, in Pavia (Italy) in 2001, the detector is now very close to start data taking in the Gran Sasso underground laboratory. The main features of the LAr TPC technique, together with a short discussion of some of the ICARUS T600 test run results, are presented in this paper
    • 

    corecore