275 research outputs found

    Super-activation of quantum non-locality

    Get PDF
    In this paper we show that quantum non-locality can be super-activated. That is, one can obtain violations of Bell inequalities by tensorizing a local state with itself. Moreover, previous results suggest that such Bell violations can be very large.Comment: v2: Refs added. Same results, v3: Minor corrections. Close to the published versio

    Quantum query algorithms are completely bounded forms

    Get PDF
    We prove a characterization of quantum query algorithms in terms of polynomials satisfying a certain (completely bounded) norm constraint. Based on this, we obtain a refined notion of approximate polynomial degree that equals the quantum query complexity, answering a question of Aaronson et al. (CCC’16). Using this characterization, we show that many polynomials of degree at least 4 are far from those coming from quantum query algorithms. Our proof is based on a fundamental result of Christensen and Sinclair (J. Funct. Anal., 1987) that generalizes the well-known Stinespring representation for quantum channels to multilinear forms. We also give a simple and short proof of one of the results of Aaronson et al. showing an equivalence between one-query quantum algorithms and bounded quadratic polynomials

    Quantum Query Algorithms are Completely Bounded Forms

    Get PDF
    We prove a characterization of t-query quantum algorithms in terms of the unit ball of a space of degree-2t polynomials. Based on this, we obtain a refined notion of approximate polynomial degree that equals the quantum query complexity, answering a question of Aaronson et al. (CCC’16). Our proof is based on a fundamental result of Christensen and Sinclair (J. Funct. Anal., 1987) that generalizes the well-known Stinespring representation for quantum channels to multilinear forms. Using our characterization, we show that many polynomials of degree four are far from those coming from two-query quantum algorithms. We also give a simple and short proof of one of the results of Aaronson et al. showing an equivalence between one-query quantum algorithms and bounded quadratic polynomials

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2∗\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    Universal Gaps for XOR Games from Estimates on Tensor Norm Ratios

    Get PDF
    We define and study XOR games in the framework of general probabilistic theories, which encompasses all physical models whose predictive power obeys minimal requirements. The bias of an XOR game under local or global strategies is shown to be given by a certain injective or projective tensor norm, respectively. The intrinsic (i.e. model-independent) advantage of global over local strategies is thus connected to a universal function r(n, m) called ‘projective–injective ratio’. This is defined as the minimal constant ρ such that ∄⋅∄X⊗πY⩜ρ∄⋅∄X⊗ΔY holds for all Banach spaces of dimensions dimX=n and dimY=m, where X⊗πY and X⊗ΔY are the projective and injective tensor products. By requiring that X=Y, one obtains a symmetrised version of the above ratio, denoted by rs(n). We prove that r(n,m)â©Ÿ19/18 for all n,mâ©Ÿ2, implying that injective and projective tensor products are never isometric. We then study the asymptotic behaviour of r(n, m) and rs(n), showing that, up to log factors: rs(n) is of the order n−−√ (which is sharp); r(n, n) is at least of the order n1/6; and r(n, m) grows at least as min{n,m}1/8. These results constitute our main contribution to the theory of tensor norms. In our proof, a crucial role is played by an ‘ℓ1/ℓ2/ℓ∞ trichotomy theorem’ based on ideas by Pisier, Rudelson, Szarek, and Tomczak-Jaegermann. The main operational consequence we draw is that there is a universal gap between local and global strategies in general XOR games, and that this grows as a power of the minimal local dimension. In the quantum case, we are able to determine this gap up to universal constants. As a corollary, we obtain an improved bound on the scaling of the maximal quantum data hiding efficiency against local measurements
    • 

    corecore