64 research outputs found

    Uncoventional Views on Certain Aspects of Toxin-Induced Metabolic Acidosis

    Get PDF
    This discussion will highlight the following 9 specific points that related to metabolic acidosis caused by various toxins. The current recommendation suggests that alcohol dehydrogenase inhibitor fomepizole is preferred to ethanol in treatment of methanol and ethylene glycol poisoning, but analysis of the enzyme kinetics indicates that ethanol is a better alternative. In the presence of a modest increase in serum osmolal gap (<30 mOsm/L), the starting dose of ethanol should be far less than the usual recommended dose. One can take advantage of the high vapor pressure of methanol in the treatment of methanol poisoning when hemodialysis is not readily available. Profuse sweating with increased water ingestion can be highly effective in reducing methanol levels. Impaired production of ammonia by the proximal tubule of the kidney plays a major role in the development of metabolic acidosis in pyroglutamic acidosis. Glycine, not oxalate, is the main final end product of ethylene glycol metabolism. Metabolism of ethylene glycol to oxalate, albeit important clinically, represents less than 1% of ethylene glycol disposal. Urine osmolal gap would be useful in the diagnosis of ethylene glycol poisoning, but not in methanol poisoning. Hemodialysis is important in the treatment of methanol poisoning and ethylene glycol poisoning with renal impairment, with or without fomepizole or ethanol treatment. Severe leucocytosis is a highly sensitive indicator of ethylene glycol poisoning. Uncoupling of oxidative phosphorylation by salicylate can explain most of the manifestations of salicylate poisoning

    Achieving a spectropolarimetric precision better than 0.1% in the near-infrared with WIRC+Pol

    Get PDF
    WIRC+Pol is a near-infrared low-resolution spectropolarimeter on the 200-inch Telescope at Palomar Observatory. The instrument utilizes a polarization grating to perform polarimetric beam splitting and spectral dispersion simultaneously. It can operate either with a focal plane slit to reduce sky background or in a slitless mode. Four different spectra sampling four linear polarization angles are recorded in the focal plane, allowing the instrument to measure all linear polarization states in one exposure. The instrument has been on-sky since February 2017 and we found that the systematic errors, likely arising from flat fielding and gravity effects on the instrument, limit our accuracy to ~1%. These systematic effects were slowly varying, and hence could be removed with a polarimetric modulator. A half-wave plate modulator and a linear polarizer were installed in front of WIRC+Pol in March 2019. The modulator worked as expected, allowing us to measure and remove all instrumental polarization we previously observed. The deepest integration on a bright point source (J = 7.689, unpolarized star HD65970) demonstrated uncertainties in q and u of 0.03% per spectral channel, consistent with the photon noise limit. Observations of fainter sources showed that the instrument could reach the photon noise limit for observations in the slitless mode. For observations in slit, the uncertainties were still a factor of few above the photon noise limit, likely due to slit loss

    iGenomics: Comprehensive DNA sequence analysis on your Smartphone

    No full text
    BACKGROUND: Following the miniaturization of integrated circuitry and other computer hardware over the past several decades, DNA sequencing is on a similar path. Leading this trend is the Oxford Nanopore sequencing platform, which currently offers the hand-held MinION instrument and even smaller instruments on the horizon. This technology has been used in several important applications, including the analysis of genomes of major pathogens in remote stations around the world. However, despite the simplicity of the sequencer, an equally simple and portable analysis platform is not yet available. RESULTS: iGenomics is the first comprehensive mobile genome analysis application, with capabilities to align reads, call variants, and visualize the results entirely on an iOS device. Implemented in Objective-C using the FM-index, banded dynamic programming, and other high-performance bioinformatics techniques, iGenomics is optimized to run in a mobile environment. We benchmark iGenomics using a variety of real and simulated Nanopore sequencing datasets of viral and bacterial genomes and show that iGenomics has performance comparable to the popular BWA-MEM/SAMtools/IGV suite, without necessitating a laptop or server cluster. CONCLUSIONS: iGenomics is available open source (https://github.com/stuckinaboot/iGenomics) and for free on Apple's App Store (https://apple.co/2HCplzr)
    • …
    corecore