36 research outputs found

    Question-Answering with Grammatically-Interpretable Representations

    Full text link
    We introduce an architecture, the Tensor Product Recurrent Network (TPRN). In our application of TPRN, internal representations learned by end-to-end optimization in a deep neural network performing a textual question-answering (QA) task can be interpreted using basic concepts from linguistic theory. No performance penalty need be paid for this increased interpretability: the proposed model performs comparably to a state-of-the-art system on the SQuAD QA task. The internal representation which is interpreted is a Tensor Product Representation: for each input word, the model selects a symbol to encode the word, and a role in which to place the symbol, and binds the two together. The selection is via soft attention. The overall interpretation is built from interpretations of the symbols, as recruited by the trained model, and interpretations of the roles as used by the model. We find support for our initial hypothesis that symbols can be interpreted as lexical-semantic word meanings, while roles can be interpreted as approximations of grammatical roles (or categories) such as subject, wh-word, determiner, etc. Fine-grained analysis reveals specific correspondences between the learned roles and parts of speech as assigned by a standard tagger (Toutanova et al. 2003), and finds several discrepancies in the model's favor. In this sense, the model learns significant aspects of grammar, after having been exposed solely to linguistically unannotated text, questions, and answers: no prior linguistic knowledge is given to the model. What is given is the means to build representations using symbols and roles, with an inductive bias favoring use of these in an approximately discrete manner

    NaturalAdversaries: Can Naturalistic Adversaries Be as Effective as Artificial Adversaries?

    Full text link
    While a substantial body of prior work has explored adversarial example generation for natural language understanding tasks, these examples are often unrealistic and diverge from the real-world data distributions. In this work, we introduce a two-stage adversarial example generation framework (NaturalAdversaries), for designing adversaries that are effective at fooling a given classifier and demonstrate natural-looking failure cases that could plausibly occur during in-the-wild deployment of the models. At the first stage a token attribution method is used to summarize a given classifier's behaviour as a function of the key tokens in the input. In the second stage a generative model is conditioned on the key tokens from the first stage. NaturalAdversaries is adaptable to both black-box and white-box adversarial attacks based on the level of access to the model parameters. Our results indicate these adversaries generalize across domains, and offer insights for future research on improving robustness of neural text classification models.Comment: Findings of EMNLP 202

    An Empirical Study of Metrics to Measure Representational Harms in Pre-Trained Language Models

    Full text link
    Large-scale Pre-Trained Language Models (PTLMs) capture knowledge from massive human-written data which contains latent societal biases and toxic contents. In this paper, we leverage the primary task of PTLMs, i.e., language modeling, and propose a new metric to quantify manifested implicit representational harms in PTLMs towards 13 marginalized demographics. Using this metric, we conducted an empirical analysis of 24 widely used PTLMs. Our analysis provides insights into the correlation between the proposed metric in this work and other related metrics for representational harm. We observe that our metric correlates with most of the gender-specific metrics in the literature. Through extensive experiments, we explore the connections between PTLMs architectures and representational harms across two dimensions: depth and width of the networks. We found that prioritizing depth over width, mitigates representational harms in some PTLMs. Our code and data can be found at https://github.com/microsoft/SafeNLP.Comment: 17 pages

    Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning

    Full text link
    Spurious correlations that degrade model generalization or lead the model to be right for the wrong reasons are one of the main robustness concerns for real-world deployments. However, mitigating these correlations during pre-training for large-scale models can be costly and impractical, particularly for those without access to high-performance computing resources. This paper proposes a novel approach to address spurious correlations during fine-tuning for a given domain of interest. With a focus on multi-modal models (e.g., CLIP), the proposed method leverages different modalities in these models to detect and explicitly set apart spurious attributes from the affected class, achieved through a multi-modal contrastive loss function that expresses spurious relationships through language. Our experimental results and in-depth visualizations on CLIP show that such an intervention can effectively i) improve the model's accuracy when spurious attributes are not present, and ii) directs the model's activation maps towards the actual class rather than the spurious attribute when present. In particular, on the Waterbirds dataset, our algorithm achieved a worst-group accuracy 23% higher than ERM on CLIP with a ResNet-50 backbone, and 32% higher on CLIP with a ViT backbone, while maintaining the same average accuracy as ERM

    Diversity of Thought Improves Reasoning Abilities of LLMs

    Full text link
    Large language models (LLMs) are documented to struggle in settings that require complex reasoning. Nevertheless, instructing the model to break down the problem into smaller reasoning steps, or ensembling various generations through modifying decoding steps boosts performance. However, these methods assume that the input prompt is fixed and expect the decoding strategies to introduce the diversity needed for ensembling. In this work, we discuss how one can create and leverage variations of the input prompt as a means of diversity of thought. We propose a method that automatically improves prompt diversity by soliciting feedback from the LLM to ideate approaches that are apt for the problem. We then ensemble the diverse prompts in our method DIVSE (DIVerse reasoning path Self-Ensemble) across multiple inference calls, or use diverse approaches within a single inference call; we call the latter IDIV-SE (In-call DIVerse reasoning path Self-Ensemble). Apart from our approaches outperforming prior work, DIV-SE(in particular) advances state-of-the-art performance on the challenging planning and graph coloring benchmarks. Our results improve the Pareto frontier of the accuracy-cost trade-off

    Improving Pre-trained Language Models' Generalization

    Full text link
    The reusability of state-of-the-art Pre-trained Language Models (PLMs) is often limited by their generalization problem, where their performance drastically decreases when evaluated on examples that differ from the training dataset, known as Out-of-Distribution (OOD)/unseen examples. This limitation arises from PLMs' reliance on spurious correlations, which work well for frequent example types but not for general examples. To address this issue, we propose a training approach called Mask-tuning, which integrates Masked Language Modeling (MLM) training objectives into the fine-tuning process to enhance PLMs' generalization. Comprehensive experiments demonstrate that Mask-tuning surpasses current state-of-the-art techniques and enhances PLMs' generalization on OOD datasets while improving their performance on in-distribution datasets. The findings suggest that Mask-tuning improves the reusability of PLMs on unseen data, making them more practical and effective for real-world applications
    corecore