686 research outputs found
Using Proanthocyanidin as a Root Dentin Conditioner for GIC Restorations
Glass ionomer cements (GICs) are considered the material of choice for restoration of root carious lesions (RCLs). When bonding to demineralized dentin, the collapse of dentinal collagen during restorative treatment may pose challenges. Considering its acidic nature and collagen biomodification effects, proanthocyanidin (PAC) could be potentially used as a dentin conditioner to remove the smear layer while simultaneously acting to biomodify the dentinal collagen involved in the bonding interface. In this study, 6.5% w/v PAC was used as a conditioner for sound (SD) and laboratory demineralized (DD) root dentin before bonding to resin-modified GIC (FII), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified GIC (FVII), or a high-viscosity GIC (FIX). Root dentin conditioned with deionized distilled water (DDW) or polyacrylic acid (PAA) served as controls. Results indicated FII showed higher shear bond strength (SBS) on SD than the other 2 GICs, especially in PAA-conditioned samples; FIX showed significantly higher SBS than FII and FVII on PAA- or PAC-conditioned DD. In each category of GIC, PAA and PAC did not have a significant influence on SBS in most cases compared to DDW except for a significant decrease in PAC-conditioned SD bonded to FII and a significant increase in PAA-conditioned DD bonded to FIX. The bonding interface between GIC and SD was generally more resistant to the acid-base challenge than DD. Although the alterations in failure modes indicated a compromised interfacial interaction between GICs and PAC-treated root dentin, biomodification effects of PAC on dentin were observed from Raman microspectroscopy analysis in terms of the changes in mineral-to-matrix ratio and hydroxyproline-to-proline ratio of dentin adjacent to the bonding interface, especially of DD. Results from this study also indicated the possibility of using in situ characterization such as Raman microspectroscopy as a complementary approach to SBS test to investigate the integrity of the bonding interface
Electrophysiology Model for a Human Heart with Ischemic Scar and Realistic Purkinje Network
The role of Purkinje fibres in the onset of arrhythmias is controversial and computer simulations may shed light on possible arrhythmic mechanisms involving the Purkinje fibres. However, few computational modelling studies currently include a detailed Purkinje network as part of the model. We present a coupled Purkinje-myocardium electrophysiology model that includes an explicit model for the ischemic scar plus a detailed Purkinje network, and compare simulated activation times to those obtained by electro-anatomical mapping in vivo during sinus rhythm pacing. The results illustrate the importance of using sufficiently dense Purkinje networks in patient-specific studies to capture correctly the myocardial early activation that may be influenced by surviving Purkinje fibres in the infarct region
Analysis of a Large Sample of Neutrino-Induced Muons with the ArgoNeuT Detector
ArgoNeuT, or Argon Neutrino Test, is a 170 liter liquid argon time projection
chamber designed to collect neutrino interactions from the NuMI beam at Fermi
National Accelerator Laboratory. ArgoNeuT operated in the NuMI low-energy beam
line directly upstream of the MINOS Near Detector from September 2009 to
February 2010, during which thousands of neutrino and antineutrino events were
collected. The MINOS Near Detector was used to measure muons downstream of
ArgoNeuT. Though ArgoNeuT is primarily an R&D project, the data collected
provide a unique opportunity to measure neutrino cross sections in the 0.1-10
GeV energy range. Fully reconstructing the muon from these interactions is
imperative for these measurements. This paper focuses on the complete kinematic
reconstruction of neutrino-induced through-going muons tracks. Analysis of this
high statistics sample of minimum ionizing tracks demonstrates the reliability
of the geometric and calorimetric reconstruction in the ArgoNeuT detector
Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam
We present the results of the first exposure of a Liquid Argon TPC to a
multi-GeV neutrino beam. The data have been collected with a 50 liters
ICARUS-like chamber located between the CHORUS and NOMAD experiments at the
CERN West Area Neutrino Facility (WANF). We discuss both the instrumental
performance of the detector and its capability to identify and reconstruct low
multiplicity neutrino interactions.Comment: 14 pages, 12 figures. Submitted for publication to Physical Review
- …