11 research outputs found

    The Microbiota Is Not an Organ: Introducing the Muco-Microbiotic Layer as a Novel Morphofunctional Structure

    Get PDF
    In this paper, we want to refute the notion that the microbiota should be considered an organ, given that an organ comprises tissue of similar or different embryological origin, while the microbiota is a pool of different microbial species originating individually from single replications and not from a common ancestral cellular element. Hence, we would like to propose a new morphological interpretation of its nature, based on the comprehensive context in which these microbes live: a muco-microbiotic layer of hollow organs, such as the airways and the bowel. The above concept should represent not only a new terminological annotation but also a more accurate portrayal of the physiology and pathophysiology of these organs. Indeed, a better understanding of the biological nature of this part of the human body can help scientists develop more specific experimental protocols, potentially leading to the establishment of better therapeutic strategies

    The Role of Molecular Chaperones in Virus Infection and Implications for Understanding and Treating COVID-19

    Get PDF
    The COVID-19 pandemic made imperative the search for means to end it, which requires a knowledge of the mechanisms underpinning the multiplication and spread of its cause, the coronavirus SARS-CoV-2. Many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread, and here we present illustrative examples. Unfortunately, the role of chaperones in the SARS-CoV-2 cycle is still poorly understood. In this review, we examine the interactions of various coronaviruses during their infectious cycle with chaperones in search of information useful for future research on SARS-CoV-2. We also call attention to the possible role of molecular mimicry in the development of autoimmunity and its widespread pathogenic impact in COVID-19 patients. Viral proteins share highly antigenic epitopes with human chaperones, eliciting anti-viral antibodies that crossreact with the chaperones. Both, the critical functions of chaperones in the infectious cycle of viruses and the possible role of these molecules in COVID-19 autoimmune phenomena, make clear that molecular chaperones are promising candidates for the development of antiviral strategies. These could consist of inhibiting-blocking those chaperones that are necessary for the infectious viral cycle, or those that act as autoantigens in the autoimmune reactions causing generalized destructive effects on human tissues

    Lipid chaperones and associated diseases: a group of chaperonopathies defining a new nosological entity with implications for medical research and practice

    Get PDF
    Fatty acid-binding proteins (FABPs) are lipid chaperones assisting in the trafficking of long-chain fatty acids with functions in various cell compartments, including oxidation, signaling, gene-transcription regulation, and storage. The various known FABP isoforms display distinctive tissue distribution, but some are active in more than one tissue. Quantitative and/or qualitative changes of FABPs are associated with pathological conditions. Increased circulating levels of FABPs are biomarkers of disorders such as obesity, insulin resistance, cardiovascular disease, and cancer. Deregulated expression and malfunction of FABPs can result from genetic alterations or posttranslational modifications and can be pathogenic. We have assembled the disorders with abnormal FABPs as chaperonopathies in a distinct nosological entity. This entity is similar but separate from that encompassing the chaperonopathies pertaining to protein chaperones. In this review, we discuss the role of FABPs in the pathogenesis of metabolic syndrome, cancer, and neurological diseases. We highlight the opportunities for improving diagnosis and treatment that open by encompassing all these pathological conditions within of a coherent nosological group, focusing on abnormal lipid chaperones as biomarkers of disease and etiological-pathogenic factors

    The Chaperone System in Breast Cancer: Roles and Therapeutic Prospects of the Molecular Chaperones Hsp27, Hsp60, Hsp70, and Hsp90

    No full text
    Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin–proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones

    Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders

    No full text
    Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. This deserves investigation because it may be at the core of neuroinflammation, and elucidation of its mechanism will open roads toward developing efficacious treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information available on the role of three members of the CS—heat shock protein (Hsp)60, Hsp70, and Hsp90—in IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS. We discuss some of the interactions, their consequences, and the molecules involved but many aspects are still incompletely elucidated, and we hope that this review will encourage research based on the data presented to pave the way for the development of chaperonotherapy. This may consist of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a defective chaperone with cytoprotective activity against neurodegeneration

    Probiotics as Potential Therapeutic Agents: Safeguarding Skeletal Muscle against Alcohol-Induced Damage through the Gut–Liver–Muscle Axis

    No full text
    Probiotics have shown the potential to counteract the loss of muscle mass, reduce physical fatigue, and mitigate inflammatory response following intense exercise, although the mechanisms by which they work are not very clear. The objective of this review is to describe the main harmful effects of alcohol on skeletal muscle and to provide important strategies based on the use of probiotics. The excessive consumption of alcohol is a worldwide problem and has been shown to be crucial in the progression of alcoholic liver disease (ALD), for which, to date, the only therapy available is lifestyle modification, including cessation of drinking. In ALD, alcohol contributes significantly to the loss of skeletal muscle, and also to changes in the intestinal microbiota, which are the basis for a series of problems related to the onset of sarcopenia. Some of the main effects of alcohol on the skeletal muscle are described in this review, with particular emphasis on the “gut-liver-muscle axis”, which seems to be the primary cause of a series of muscle dysfunctions related to the onset of ALD. The modulation of the intestinal microbiota through probiotics utilization has appeared to be crucial in mitigating the muscle damage induced by the high amounts of alcohol consumed

    From Dysbiosis to Neurodegenerative Diseases through Different Communication Pathways: An Overview

    No full text
    The microbiome research field has rapidly evolved over the last few decades, becoming a major topic of scientific and public interest. The gut microbiota (GM) is the microbial population living in the gut. The GM has many functions, such as maintaining gut homeostasis and host health, providing defense against enteric pathogens, and involvement in immune system development. Several studies have shown that GM is implicated in dysbiosis and is presumed to contribute to neurodegeneration. This review focuses mainly on describing the connection between the intestinal microbiome alterations (dysbiosis) and the onset of neurodegenerative diseases to explore the mechanisms that link the GM to nervous system health, such as the gut-brain axis, as well as the mitochondrial, the adaptive humoral immunity, and the microvesicular pathways. The gut-brain communication depends on a continuous bidirectional flow of molecular signals exchanged through the neural and the systemic circulation. These pathways represent a possible new therapeutic target against neuroinflammation and neurodegeneration. Progress in this context is desperately needed, considering the severity of most neurodegenerative diseases and the current lack of effective treatments

    Structural and Dynamic Disturbances Revealed by Molecular Dynamics Simulations Predict the Impact on Function of CCT5 Chaperonin Mutations Associated with Rare Severe Distal Neuropathies

    No full text
    Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies

    Quantitative Immunomorphological Analysis of Heat Shock Proteins in Thyroid Follicular Adenoma and Carcinoma Tissues Reveals Their Potential for Differential Diagnosis and Points to a Role in Carcinogenesis

    No full text
    Hsp27, Hsp60, Hsp70, and Hsp90 are chaperones that play a crucial role in cellular homeostasis and differentiation, but they may be implicated in carcinogenesis. Follicular neoplasms of the thyroid include follicular adenoma and follicular carcinoma. The former is a very frequent benign encapsulated nodule, whereas the other is a nodule that infiltrates the capsule, blood vessels and the adjacent parenchyma, with a tendency to metastasize. The main objective was to assess the potential of the Hsps in differential diagnosis and carcinogenesis. We quantified by immunohistochemistry Hsp27, Hsp60, Hsp70, and Hsp90 on thin sections of human thyroid tissue with follicular adenoma or follicular carcinoma, comparing the tumor with the adjacent peritumoral tissue. Hsp60, Hsp70, and Hsp90 were increased in follicular carcinoma compared to follicular adenoma, while Hsp27 showed no difference. Histochemical quantification of Hsp60, Hsp70, and Hsp90 allows diagnostic distinction between follicular adenoma and carcinoma, and between tumor and adjacent non-tumoral tissue. The quantitative variations of these chaperones in follicular carcinoma suggest their involvement in tumorigenesis, for instance in processes such as invasion of thyroid parenchyma and metastasization
    corecore