1,066 research outputs found

    Dynamical suppression of telegraph and 1/f noise due to quantum bistable fluctuator

    Full text link
    We study dynamical decoupling of a qubit from non gaussian quantum noise due to discrete sources, as bistable fluctuators and 1/f noise. We obtain analytic and numerical results for generic operating point. For very large pulse frequency, where dynamic decoupling compensates decoherence, we found universal behavior. At intermediate frequencies noise can be compensated or enhanced, depending on the nature of the fluctuators and on the operating point. Our technique can be applied to a larger class of non-gaussian environments.Comment: Revtex 4, 5 pages, 3 figures. Title revised and some other minor changed. Final version as published in PR

    Electron transfer in the nonadiabatic regime: Crossover from quantum-mechanical to classical behaviour

    Full text link
    We study nonadiabatic electron transfer within the biased spin-boson model. We calculate the incoherent transfer rate in analytic form at all temperatures for a power law form of the spectral density of the solvent coupling. In the Ohmic case, we present the exact low temperature corrections to the zero temperature rate for arbitrarily large bias energies between the two redox sites. Both for Ohmic and non-Ohmic coupling, we give the rate in the entire regime extending from zero temperature, where the rate depends significantly on the detailed spectral behaviour, via the crossover region, up to the classical regime. For low temperatures, the rate shows characteristic quantum features, in particular the shift of the rate maximum to a bias value below the reorganization energy, and the asymmetry of the rate around the maximum. We study in detail the gradual extinction of the quantum features as temperature is increased.Comment: 17 pages, 4 figures, to be published in Chem. Phy

    Decoherence due to telegraph and 1/f noise in Josephson qubits

    Full text link
    We study decoherence due to random telegraph and 1/f noise in Josephson qubits. We illustrate differences between gaussian and non gaussian effects at different working points and for different protocols. Features of the intrinsically non-gaussian and non-Markovian low-frequency noise may explain the rich physics observed in the spectroscopy and the dynamics of charge based devices.Comment: 6 pages, 4 figures. Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics 2004 (MS+S2004), Atsugi, Japa

    Characterization of coherent impurity effects in solid state qubits

    Full text link
    We propose a characterisation of the effects of bistable coherent impurities in solid state qubits. We introduce an effective impurity description in terms of a tunable spin-boson environment and solve the dynamics for the qubit coherences. The dominant rate characterizing the asymptotic time limit is identified and signatures of non-Gaussian behavior of the quantum impurity at intermediate times are pointed out. An alternative perspective considering the qubit as a measurement device for the spin-boson impurity is proposed.Comment: 4 pages, 5 figures. Replaced with published version, minor change

    Hidden entanglement, system-environment information flow and non-Markovianity

    Full text link
    It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.Comment: 9 pages, 2 figures; proceedings of the conference IQIS 2013, September 24-26 2013, Como, Ital

    Hidden entanglement in the presence of random telegraph dephasing noise

    Full text link
    Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.Comment: 8 pages, 1 figure, submitted to Physica Scripta on September 17th 201
    • …
    corecore