871 research outputs found

    Tomography of silicate dust around M-type AGB stars I. Diagnostics based on dynamical models

    Full text link
    The heavy mass loss observed in evolved asymptotic giant branch stars is usually attributed to a two-step process: atmospheric levitation by pulsation-induced shock waves, followed by radiative acceleration of newly formed dust grains. Detailed wind models suggest that the outflows of M-type AGB stars may be triggered by photon scattering on Fe-free silicates with grain sizes of about 0.1 - 1 Ό\mum. Due to the low grain temperature, these Fe-free silicates can condense close to the star, but they do not produce the characteristic mid-IR features that are often observed in M-type AGB stars. However, it is probable that the silicate grains are gradually enriched with Fe as they move away from the star, to a degree where the grain temperature stays below the sublimation temperature, but is high enough to produce emission features. We investigate whether differences in grain temperature in the inner wind region, which are related to changes in the grain composition, can be detected with current interferometric techniques, in order to put constraints on the wind mechanism. To investigate this we use radial structures of the atmosphere and wind of an M-type AGB star, produced with the 1D radiation-hydrodynamical code DARWIN. The spectral energy distribution is found to be a poor indicator of different temperature profiles and therefore is not a good tool for distinguishing different scenarios of changing grain composition. However, spatially resolved interferometric observations have promising potential. They show signatures even for Fe-free silicates (found at 2-3 stellar radii), in contrast to the spectral energy distribution. Observations with baselines that probe spatial scales of about 4 stellar radii and beyond are suitable for tracing changes in grain composition, since this is where effects of Fe enrichment should be found.Comment: Accepted for publication in Section 8. Stellar atmospheres of Astronomy and Astrophysics. The official date of acceptance is 07/09/2017. 9 pages, 7 figures, 4 figures in appendi

    Renormalization of two-loop diagrams in scalar lattice field theory

    Get PDF
    We present a method to calculate to very high precision the coefficients of the divergences occuring in two-loop diagrams for a massive scalar field on the lattice. The approach is based on coordinate space techniques and extensive use of the precisely known Green's function.Comment: 22 pages, 2 figures, additional results include

    Modelling the atmosphere of the carbon-rich Mira RU Vir

    Full text link
    Context. We study the atmosphere of the carbon-rich Mira RU Vir using the mid-infrared high spatial resolution interferometric observations from VLTI/MIDI. Aims. The aim of this work is to analyse the atmosphere of the carbon-rich Mira RU Vir, with state of the art models, in this way deepening the knowledge of the dynamic processes at work in carbon-rich Miras. Methods. We compare spectro-photometric and interferometric measurements of this carbon-rich Mira AGB star, with the predictions of different kinds of modelling approaches (hydrostatic model atmospheres plus MOD-More Of Dusty, self-consistent dynamic model atmospheres). A geometric model fitting tool is used for a first interpretation of the interferometric data. Results. The results show that a joint use of different kind of observations (photometry, spectroscopy, interferometry) is essential to shed light on the structure of the atmosphere of a carbon-rich Mira. The dynamic model atmospheres fit well the ISO spectrum in the wavelength range {\lambda} = [2.9, 25.0] {\mu}m. Nevertheless, a discrepancy is noticeable both in the SED (visible), and in the visibilities (shape and level). A possible explanation are intra-/inter-cycle variations in the dynamic model atmospheres as well as in the observations. The presence of a companion star and/or a disk or a decrease of mass loss within the last few hundred years cannot be excluded but are considered unlikely.Comment: 15 pages. Accepted in A&

    The complex environment of the bright carbon star TX Psc as probed by spectro-astrometry

    Full text link
    Context: Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods:We obtained CRIRES observations of several CO Δ\Deltav=1 lines near 4.6 ÎŒ\mum and HCN lines near 3 ÎŒ\mum in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0deg) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of the star with a flux of several percent of the photospheric flux. We estimate a lower limit of the blob temperature of 1000 K. The blob may be related to a mass ejection as found for AGB stars or red supergiants. We also consider the scenario of a companion object. Conclusions: Although there is clear spectro-astrometric evidence of a rather prominent structure near TX Psc, it does not seem to relate to the other evidence of asymmetries, so no definite explanation can be given. Our data thus underline the very complex structure of the environment of this star, but further observations that sample the angular scales out to a few hundred milli-arcseconds are needed to get a clearer picture

    Catching the fish - Constraining stellar parameters for TX Psc using spectro-interferometric observations

    Full text link
    Stellar parameter determination is a challenging task when dealing with galactic giant stars. The combination of different investigation techniques has proven to be a promising approach. We analyse archive spectra obtained with the Short-Wavelength-Spectrometer (SWS) onboard of ISO, and new interferometric observations from the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI) of a very well studied carbon-rich giant: TX Psc. The aim of this work is to determine stellar parameters using spectroscopy and interferometry. The observations are used to constrain the model atmosphere, and eventually the stellar evolutionary model in the region where the tracks map the beginning of the carbon star sequence. Two different approaches are used to determine stellar parameters: (i) the 'classic' interferometric approach where the effective temperature is fixed by using the angular diameter in the N-band (from interferometry) and the apparent bolometric magnitude; (ii) parameters are obtained by fitting a grid of state-of-the-art hydrostatic models to spectroscopic and interferometric observations. We find a good agreement between the parameters of the two methods. The effective temperature and luminosity clearly place TX Psc in the carbon-rich AGB star domain in the H-R-diagram. Current evolutionary tracks suggest that TX Psc became a C-star just recently, which means that the star is still in a 'quiet' phase compared to the subsequent strong-wind regime. This is in agreement with the C/O ratio being only slightly larger than 1.Comment: 11 pages, 9 figures, 5 table

    Hi-GAL, the Herschel infrared Galactic Plane Survey: photometric maps and compact source catalogues: First data release for the inner Milky Way: +68° ≄ / ≄ 70°

    Get PDF
    Aims. We present the first public release of high-quality data products (DR1) from Hi-GAL, the Herschel infrared Galactic Plane Survey. Hi-GAL is the keystone of a suite of continuum Galactic plane surveys from the near-IR to the radio and covers five wavebands at 70, 160, 250, 350 and 500 ÎŒm, encompassing the peak of the spectral energy distribution of cold dust for 8 â‰Č T â‰Č 50 K. This first Hi-GAL data release covers the inner Milky Way in the longitude range 68° ≳ ℓ ≳ −70° in a | b | ≀ 1° latitude strip. Methods. Photometric maps have been produced with the ROMAGAL pipeline, which optimally capitalizes on the excellent sensitivity and stability of the bolometer arrays of the Herschel PACS and SPIRE photometric cameras. It delivers images of exquisite quality and dynamical range, absolutely calibrated with Planck and IRAS, and recovers extended emission at all wavelengths and all spatial scales, from the point-spread function to the size of an entire 2°× 2° “tile” that is the unit observing block of the survey. The compact source catalogues were generated with the CuTEx algorithm, which was specifically developed to optimise source detection and extraction in the extreme conditions of intense and spatially varying background that are found in the Galactic plane in the thermal infrared. Results. Hi-GAL DR1 images are cirrus noise limited and reach the 1σ-rms predicted by the Herschel Time Estimators for parallel-mode observations at 60"^(s-1) scanning speed in relatively low cirrus emission regions. Hi-GAL DR1 images will be accessible through a dedicated web-based image cutout service. The DR1 Compact Source Catalogues are delivered as single-band photometric lists containing, in addition to source position, peak, and integrated flux and source sizes, a variety of parameters useful to assess the quality and reliability of the extracted sources. Caveats and hints to help in this assessment are provided. Flux completeness limits in all bands are determined from extensive synthetic source experiments and greatly depend on the specific line of sight along the Galactic plane because the background strongly varies as a function of Galactic longitude. Hi-GAL DR1 catalogues contain 123210, 308509, 280685, 160972, and 85460 compact sources in the five bands

    The multifaceted nature of aminopeptidases ERAP1, ERAP2, and LNPEP: from evolution to disease

    Get PDF
    In the human genome, the aminopeptidases ERAP1, ERAP2 and LNPEP lie contiguously on chromosome 5. They share sequence homology, functions and associations with immune-mediated diseases. By analyzing their multifaceted activities as well as their expression in the zoological scale, we suggest here that the progenitor of the three aminopeptidases might be LNPEP from which the other two aminopeptidases could have derived by gene duplications. We also propose that their functions are partially redundant. More precisely, the evolutionary story of the three aminopeptidases might have been dictated by their role in regulating the renin–angiotensin system, which requires their controlled and coordinated expression. This hypothesis is supported by the many species that lack one or the other gene as well as by the lack of ERAP2 in rodents and a null expression in 25% of humans. Finally, we speculate that their role in antigen presentation has been acquired later on during evolution. They have therefore been diversified between those residing in the ER, ERAP1 and ERAP2, whose role is to refine the MHC-I peptidomes, and LNPEP, mostly present in the endosomal vesicles where it can contribute to antigen cross-presentation or move to the cell membrane as receptor for angiotensin IV. Their association with autoinflammatory/autoimmune diseases can therefore be two-fold: as “contributors” to the shaping of the immune-peptidomes as well as to the regulation of the vascular response

    Planck intermediate results XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck

    Get PDF
    The nearby Chamaeleon clouds have been observed in rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the Hi and ^(12)CO radio data to (i) map the hydrogen column densities, NH, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the Hi-bright and CO-bright media; (ii) constrain the CO-to-H_2 conversion factor, XCO; and (iii) probe the dust properties per gas nucleon in each phase and map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in Hi and ^(12)CO line emission to model in parallel the -ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ_(353); the thermal radiance of the large grains; and an estimate of the dust extinction, A_(VQ), empirically corrected for the starlight intensity. The dust and -ray models have been coupled to account for the DNM gas. The consistent -ray emissivity spectra recorded in the different phases confirm that the GeV–TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the ^(12)CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the Hi-DNM-CO transitions for five separate clouds. CO-dark H_2 dominates the molecular columns up to A_V ≃ 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected A_(VQ) extinction largely provides the best fit to the total gas traced by the rays. Nevertheless, we find evidence for a marked rise in A_(VQ)=N_H with increasing N_H and molecular fraction, and with decreasing dust temperature. The rise in τ_(353)=N_H is even steeper. We observe variations of lesser amplitude and orderliness for the specific power of the grains, except for a coherent decline by half in the CO cores. This combined information suggests grain evolution. We provide average values for the dust properties per gas nucleon in the different phases. The rays and dust radiance yield consistent XCO estimates near 0.7 x 10^(20) cm^(-2) K^(-1) km^(-1) s. The AVQ and τ_(353) tracers yield biased values because of the large rise in grain opacity in the CO clouds. These results clarify a recurrent disparity in the -ray versus dust calibration of X_(CO), but they confirm the factor of 2 difference found between the X_(CO) estimates in nearby clouds and in the neighbouring spiral arms
    • 

    corecore