5,395 research outputs found

    Cross sections for short pulse single and double ionization of helium

    Get PDF
    In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and double ionization from a time-dependent wavepacket by effectively propagating for an infinite time following a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding to autoionizing states are easily resolved with these methods.Comment: 9 pages, 9 figure

    Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities

    Full text link
    The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corresponding to the maximum oscillation power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing of g-modes, and different acoustic radii. We discuss the signature of rotation-induced mixing on the global asteroseismic quantities, that can be detected observationally. Thermohaline mixing whose effects can be identified by spectroscopic studies cannot be caracterized with the global seismic parameters studied here. But it is not excluded that individual mode frequencies or other well chosen asteroseismic quantities might help constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&

    Localized basis sets for unbound electrons in nanoelectronics

    Full text link
    It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.Comment: 6 pages, 5 figures, accepted by J. Chem. Phys. (http://jcp.aip.org/

    An Efficient Bayesian Inference Framework for Coalescent-Based Nonparametric Phylodynamics

    Full text link
    Phylodynamics focuses on the problem of reconstructing past population size dynamics from current genetic samples taken from the population of interest. This technique has been extensively used in many areas of biology, but is particularly useful for studying the spread of quickly evolving infectious diseases agents, e.g.,\ influenza virus. Phylodynamics inference uses a coalescent model that defines a probability density for the genealogy of randomly sampled individuals from the population. When we assume that such a genealogy is known, the coalescent model, equipped with a Gaussian process prior on population size trajectory, allows for nonparametric Bayesian estimation of population size dynamics. While this approach is quite powerful, large data sets collected during infectious disease surveillance challenge the state-of-the-art of Bayesian phylodynamics and demand computationally more efficient inference framework. To satisfy this demand, we provide a computationally efficient Bayesian inference framework based on Hamiltonian Monte Carlo for coalescent process models. Moreover, we show that by splitting the Hamiltonian function we can further improve the efficiency of this approach. Using several simulated and real datasets, we show that our method provides accurate estimates of population size dynamics and is substantially faster than alternative methods based on elliptical slice sampler and Metropolis-adjusted Langevin algorithm

    26Al yields from rotating Wolf--Rayet star models

    Full text link
    We present new 26^{26}Al stellar yields from rotating Wolf--Rayet stellar models which, at solar metallicity, well reproduce the observed properties of the Wolf-Rayet populations. These new yields are enhanced with respect to non--rotating models, even with respect to non--rotating models computed with enhanced mass loss rates. We briefly discuss some implications of the use of these new yields for estimating the global contribution of Wolf-Rayet stars to the quantity of 26^{26}Al now present in the Milky Way.Comment: 6 pages, 2 figures, to appear in New Astronomy Review

    Head-mounted display-based therapies for adults post-stroke: A systematic review and meta-analysis

    Get PDF
    Immersive virtual reality techniques have been applied to the rehabilitation of patients after stroke, but evidence of its clinical effectiveness is scarce. The present review aims to find studies that evaluate the effects of immersive virtual reality (VR) therapies intended for motor function rehabilitation compared to conventional rehabilitation in people after stroke and make recommendations for future studies. Data from different databases were searched from inception until October 2020. Studies that investigated the effects of immersive VR interventions on poststroke adult subjects via a head-mounted display (HMD) were included. These studies included a control group that received conventional therapy or another non-immersive VR intervention. The studies reported statistical data for the groups involved in at least the posttest as well as relevant outcomes measuring functional or motor recovery of either lower or upper limbs. Most of the studies found significant improvements in some outcomes after the intervention in favor of the virtual rehabilitation group. Although evidence is limited, immersive VR therapies constitute an interesting tool to improve motor learning when used in conjunction with traditional rehabilitation therapies, providing a non-pharmacological therapeutic pathway for people after stroke

    Breeding Quality Protein Maize (QPM): Protocols for Developing QPM Cultivars

    Get PDF
    This manual is intended for maize breeders who would like to start developing quality protein maize (QPM) cultivars. It is a compilation and consolidation of several breeding protocols successfully used at CIMMYT over two decades of QPM development and breeding. A brief background and the basic theory of QPM genetics are explained, leading up to detailed methods and procedures of QPM development.Zea mays, Plant breeding, Breeding methods, Genetic resources, Protein quality, Protein content, Application methods, Lysine, Tryptophan, Food composition, Crop Production/Industries, F30, Q04,

    LHCb Conditions Database

    Get PDF
    The LHCb Conditions Database (CondDB) project aims to provide the necessary tools to handle non-event time-varying data. The LCG project COOL provides a generic API to handle this type of data and an interface to it has been integrated into the LHCb framework Gaudi. The interface is based on the Persistency Service infrastructure of Gaudi, allowing the user to load it at run-time only if needed. Since condition data are varying with time, as the events are processed, condition objects in memory must be kept synchronized to the values in the database for the current event time. A specialized service has been developed independently of the COOL API interface to provide an automated and optimized update of the condition objects in memory. The High Level Trigger of LHCb is a specialized version of an LHCb reconstruction/analysis program and as such it will need conditions, like alignments and calibrations, from the conditions database. For performance reasons, the HLT processes running on the Event Filter Farm cannot access the database directly. A special Online implementation of the CondDB service is thus needed under supervision of the LHCb Control system

    Electronic transport and vibrational modes in the smallest molecular bridge: H2 in Pt nanocontacts

    Full text link
    We present a state-of-the-art first-principles analysis of electronic transport in a Pt nanocontact in the presence of H2 which has been recently reported by Smit et al. in Nature 419, 906 (2002). Our results indicate that at the last stages of the breaking of the Pt nanocontact two basic forms of bridge involving H can appear. Our claim is, in contrast to Smit et al.'s, that the main conductance histogram peak at G approx 2e^2/h is not due to molecular H2, but to a complex Pt2H2 where the H2 molecule dissociates. A first-principles vibrational analysis that compares favorably with the experimental one also supports our claim .Comment: 5 pages, 3 figure
    • …
    corecore